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Abstract

Outlier and influence statistics play an important role in assessing individual
or grouped observations that may have undue impact on the parameter estimates
of a statistical model. The methods are well-developed for linear and linear mixed-
effects models, and are easily implemented in most statistical packages. Though
similar statistics exist for univariate survival models, not much has been done for
models of multivariate survival data. The objective of this PhD work was to derive
outlier and influence statistics for multivariate survival data models, by extending
limited research work on such statistics for linear mixed-effects and univariate
survival models. The derived statistics were evaluated using simulation studies
and illustrated with an analysis of child survival data in Malawi, which had 56
sub-districts (clusters), from both rural and urban areas. The proposed statistics
had a high performance of well over 90% in identifying correctly the outlying or
influential clusters, and the performance improved with increasing cluster size. In
the application to clustered survival data, mostly off-city clusters were identified as
having a different child survival pattern and impactful on regression coefficients and
variance estimates. This study recommends incorporating outlier and influence
assessments when analysing clustered survival data, otherwise the estimates of

both regression slopes and variance components could be biased.
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Chapter 1

Introduction

This chapter presents the research problem for this study as well as the study

objectives. It further provides the outline of this thesis.

1.1 Background

Mixed-effects models have long been applied in statistics to describe heterogeneity
in outcome variable data, when making inferences (McGilchrist & Aisbett] 1991}
McGilchrist], [1993; [Donner & Klar| [1994; Yau, 2001; Bienias et al., 2002; |Glidden
& Vittinghoff] [2004; Xu et al., |2009; Turkan & Toktamis, 2012)). The commonly
applied regression models, such as generalised linear model (glm) assume that a
large portion of variation in the outcome variable is explained by the use of some
fixed covariates in the model. In addition, the glm assumes that the realisations
of the response variable are statistically independent. Both of these assumptions

may not be entirely correct at certain times.

There are situations where the data have apparent clustering or grouping that
can induce dependences of outcome observations from the same cluster. This may
cause both the independence and variance-accounting assumptions of the model
to be unrealistic. The generalised linear mixed-effects model (glmm) solves these

shortcomings. This model maximises utilisation of complex data by making model



inferences that account for variation in the responses attributable to subjects’ clus-

tering (Ziegler et al., [1998; |Galbraith et al., 2010)).

The mixed-effects model, also referred to as multi-level model involves specify-
ing a probability distribution for the observation errors at first stage and another
distribution for parameters called random effects in the model at subsequent higher
stage (Laird & Ware| [1982; |Langford & Lewis, [1998). A stage or level is defined as
a unit of analysis, this can be a subject or a cluster of subjects. The random pa-
rameters belong to higher level and are assumed to vary across clusters or groups,

as the observed clusters are a random sample from all clusters in the population.

Thus, the model assumes there are interactions of fixed covariates with subjects’
group effects called random covariates, which are also supposed to be estimated
by the model, hence the term mixed-effects model (Langford & Lewis| |1998)). The
random effects can be predicted for each group of subjects in the model. But
the focus of the mixed-effects model is usually on measuring variation in outcome
variable in the model that is contributed by the data clustering, known as variance
components (Laird & Ware, 1982). Therefore, an explanatory variable enters the

mixed-effects model as fixed or random effects variable.

In the context of a mixed-effects model, a fixed-effect predictor is a variable
that the analyst expects to have effect on the response variable. By ‘fixed’ it means
the variable is not random in the population, it is measured without errors. For
example, ‘source of drinking water” for a household can be a fixed-effect variable
in a model that predicts the ‘diarrhoea’ outcome in children aged below five years.
The odds of suffering from diarrhoea for a child whose household drinks piped
water, for instance, are regarded as fixed in the population and the model tries to

estimate these odds.



While random-effects variables are often the grouping or classification factors
of observations for which the study tries to control their impact on the estimation
of fixed effects. An example for the same diarrhoea model is the variable ‘village
where a child lives’. A village is a discrete variable that may classify a location
for a group of children. In this regard, the analyst may not be interested in the
impact of a ‘child’s village’ on the ‘diarrhoea’ outcome, but how much variation
in ‘diarrhoea’ outcome in the model is attributable to the ‘child’s village’ factor,

when predicting effect of ‘source of drinking water’ on the diarrhoea outcome.

There are counterpart forms of the generalised linear mixed-effects model for
survival data. Survival analysis deals with modelling of an outcome variable that
reflects duration of time from some defined baseline, such as admission of a patient
into hospital, until occurrence of some defined event, such as discharge from the
hospital. When the duration of time is directly modelled on some covariates, the
survival model is called accelerated failure time (AFT) model (Chiou et al., 2014)).
Alternatively, the rate of occurrence of the event, referred to as hazard rate, can be

modelled as a function of the covariates, which is the case with Cox proportional

hazard (PH) model (D. R. Cox| 1972).

The Cox PH model assumes that the hazard ratio for two subjects with dif-
ferent measurements on some covariate is a fixed proportionality term that is free
of time. Thus, the covariates have proportional effects on the hazard function
over time. This model is handy to implement in most statistical packages and
easy to interpret, but like a generalised linear model, it assumes that event-times
of subjects are independent (Xue & Schifano, 2017). So, it does not account for
clustering of subjects, which can lead to biased estimates of the fixed effects due to
possible under-estimation of their variances and standard errors (Liang & Zeger),
1993; Manda, |2011)). For this reason, mixed-effect survival models are used where

the data have some clustering structures (Guo et al., (1994; |Liang et al.| 1995}



Vaida & Xu, 2000).

The mixed-effect survival model can estimate fixed effects, predicted values
of random effects for each cluster, and amount of variation in survival times at-
tributable to clustering of data. A simple case is the shared frailty model, which
incorporates a frailty term in the model that estimates single cluster-specific ran-
dom effects shared by subjects in the same cluster (Ripatti & Palmgren, 2000; Ha
et al, 2011)). The shared cluster-effect represents unique features of the cluster
that can affect its baseline risk to the event of interest. The use of cluster-specific
frailties in the model comes from the fact that different clusters have different dis-
positions to failure that can cause subjects in some clusters to be more vulnerable

to failure or be more frail compared to other clusters (Vaupel et al., [1979)).

In recent years, the mixed-effects survival model has become an ideal choice
for analysts to account for clustering of data, when applying a survival model
to various designs of clustered survival data. These designs include multi-centre
clinical trials (Ha et all 2011)), complex surveys (Manda, 2011), and longitudinal
studies (Krol et al.l 2017). However, there is paucity of literature on the critical
examination of the impact of unusual clusters on the inferences that can be drawn
from the survival mixed model. Due to the uniqueness of subjects in different clus-
ters, some clusters may be outliers to the mixed-effects model or may have large

influence on parameter estimates in the model compared to others (Zewotir, 2008]).

Moreover, the mixed-effects model is reportedly sensitive to outliers (Zewotir
& Galpin, 2005; [Turkan & Toktamis, 2012)). This implies that ignoring outliers
and influential observations assessments would cost the conclusions hugely, when
applying the mixed-effects model on data that have some unusual subjects. This
may apply to a survival mixed model. There have been advancements in parameter

estimation for the survival mixed-effects model, for example using penalised partial



likelihood method (Ripatti & Palmgren, [2000) or marginal partial likelihood tech-
nique (Manday, [2001)) or the L; penalised (lasso) method (Goeman, [2010) among
others. Nonetheless, little effort has been made to devise diagnostic assessment
methods for the survival mixed model, especially the analysis of cluster outliers

and influence.

The term ‘outlier’; in the context of this study, means a response value that is
exceedingly large or small compared to others, when viewed from the fitted line
or curve (Sarkar et al., |2011; |Aguinis et al., 2013} |Z. Zhang, |2016). Often times,
outliers are indicative of some unusual process in the data. For example, a commu-
nity with very tall inhabitants due to genetic factors would report very unfamiliar
heights of subjects from the rest communities in a study that is recording height
of subjects in the population. The model outliers are sometimes a result of data
transcription errors. Whatever the cause for outlierness of a data point is, outliers
are important data in the modelling process as they have a bearing on the appro-
priateness of assumptions made on the model’s error variables. A more general
term for model diagnostic statistic is ‘residual’, which simply means the differ-
ence between the observed and fitted outcomes. The smaller this is, the better

the model’s fit for the observation of interest (Aguinis et al., 2013; |Z. Zhang} 2016]).

Associated with the concept of residual, is a measure called ‘leverage’, which
reports usefulness of a subject to the model-fit. The leverage of an observation is
the distance of the subject’s covariate value from an average of the values for that
covariate (Sarkar et all[2011; Z. Zhang, 2016). In consequence, subjects with very
large or small covariate values have more leverage than those with intermediate
values (Z. Zhang), 2016). Since a regression line or surface is a linear combination
of covariates’ values mapping to the mean of the response variable, a large leverage
subject will pull the fitted line to pass closer compared to a small leverage subject.

However, inference-specific importance of the subject to the model is analysed



through a quantity called ‘influence’. This measures the effect of dropping a data
point on the model’s inferences, such as fitted values, regression coefficients or

likelihood (Das & Gogoi, [2015)). It is a function of the outlier and leverage.

The measures described above are the focus of this study, especially in the con-
text of clustered survival data. It is important to note that the implementation
units for most national health policies in African states are provinces, districts,
and communities. Thus, it is necessary to study methods of flagging outlying
and influential communities with regard to various health outcomes of subjects, as
these would help stakeholders in public health to plan easily for targeted imple-

mentation of the health policies.

As discussed in previous paragraphs, the biomedical field may involve studying
recurrent events (Krol et al., [2017)), hence flagging outlying or influential groups of
patients may guide researchers on future treatment options for unusual groups. In
multi-centre clinical trials involving grouped health outcomes, for example, know-
ing outlying or influential communities may help in formulating targeted actions
for the most vulnerable communities (Ha et al., 2011). When outlying groups
are due to measurement errors, as can be observed during interim analyses in
randomised controlled trials, the diagnostic assessment for groups can help in giv-
ing timely advice to the data management team to be cautious during the data

collection phase of the clinical trials.

1.2 Preliminaries of multivariate survival data
analysis

Multivariate survival data arise in different ways. For example, through clustered
survival data, where failure-times of subjects from the same cluster are observed

(Guo et al.|1994). These can be found in multi-centre randomised controlled trials,



where each centre involves a number of participants (Glidden & Vittinghoft, 2004}
Legrand et al 2006; [Ha et al., 2011), and family genetic studies, where members
of the same family form a group (Xu, 2004; Maia et al., 2014). The other way is
through recurrent events data, in which an individual may experience the event
of interest and of the same type more than once. This could be re-hospitalisation
data for patients of some chronic disease, such as diabetes (Krol et al., [2017)).
In such scenarios, the interest of an analyst may be to study the variability of
subjects’ survival times across clusters (Xu, 2004). This study concerns with es-
timating associations between certain covariates and survival times, while taking

into account the existing dependences among the survival times.

Suppose there are M distinct clusters, each with nj subjects, (j =1,2,...,M;i=
1,2,...,nj). Let T" denotes a survival time random variable with ¢;; its observed
value for i-th subject in j-th cluster. Further, let X;; denotes the p x 1 covariate
vector for fixed effect and [ the corresponding p x 1 vector of fixed effect coeffi-
cients, thus ng? = (X;j1Xij2...Xijp) is a transpose of the vector of covariate values
for X;; for i-th subject within the j-th cluster. Furthermore, let ¢;; take the
value of 1 or 0 depending on whether or not the subject experienced the event.
Also, assume that each j-th cluster has specific ¢ x 1 random effects (or frailty)
b;r = (bj1bja...bjq) with Z;;, ¢ x 1 vector of the covariates with the random effects,
so that Zg- = (Zij1Zij2...Zijq) becomes cluster covariate value for i—th subject
in j—th cluster. The observed survival times t;; for subjects ¢ in cluster j are
assumed to be conditionally independent, given the covariates X; and random ef-
fect b; (Skrondal & Rabe-Hesketh), 2009). Conditional on vector of cluster-specific
random effect b;, the hazard of failure for subject ¢ in cluster j at time ¢, denoted

hi;(t|5,b;) (Abrahantes & Burzykowski, [2005; Xu et al |2009) is given by:

hij(t18,b;) = ho(t)exp(X ;8 + Z{jb)) (1.1)

where hg(t) is unspecified baseline hazard function. The assumption with random



effects is that b;’s are identically and independently distributed random variables
from a distribution known up to a finite number of parameters. For example,
random effects could be assumed to have multivariate normal distribution, i.e.
bj ~ N(0,D), where D is ¢ x ¢ diagonal covariance matrix with identical entries

for each level of b;.

As a consequence of (1.1), the corresponding integrated hazard function is:

i (15,0) = [ hig(115.b;
:/O ho(t)exp(X L6+ ZE;)dt (1.2)

= HMt)exp(X%ﬁ + Z%bj).

where Ho(t) = [3 ho(t)dt is unspecified cumulative baseline hazard function. While

the survival function is:

t
Sij(t183,b5) =€xp{—/ hij(t|3,b;)dt}

= exp{— / ho(t)exp(X; ﬁ+Z£bj)dt} )
= 651719{—/0 ho(t)dt}e”p(xijngbj)

_ [SO (t)]emp(Xg;ﬁ-i-Zg;bj) _

where So(t) = exp{— [3 ho(t)dt} is unspecified baseline survival function.

The application of model (1.1) aims to estimate the parameters 5 and D from
the observed survival times data (¢;;,X;;,Zi;,0ij) (Abrahantes & Burzykowski,
2005; Xu et al., 2009). Let Z represents n X g covariates with random effects
while X represents n X p covariates with fixed effects (Xu, 2004; Xu et al., [2009;
M. Crowther} 2017)) and often covariates in Z are included in fixed effects covari-
ates X. If ¢=1,Z;; =1 in model (1.1), then the model becomes a usual univariate
frailty (or random-intercept) model. Further, the log-hazard scale of model (1.1)

is analogous to a linear mixed-effects model, that belongs to the class of models



called generalised linear mixed-effects model (GLMM) (Ibrahim et al., 2001} Xiang
et al., [2002; Skrondal & Rabe-Hesketh, [2009)). For this reason, model (1.1) is also
referred to as Cox proportional hazards mixed-effects model (PHMM) (Palmgren
& Ripatti, 2002; [Abrahantes & Burzykowski, 2005; |Xu et al., [2009).

The model (1.1) is multivariate because a cluster of subjects (as opposed to
individual subjects) is observed in the random-effects design (Skrondal & Rabe-
Hesketh|, 2009)). The random-effects b;, which represent various sources of varia-
tions for child survival times that are unique to j-th cluster, relate to logarithm of
hazards of failure linearly and are additive with fixed-effects terms in the model.
In this study, the continuous event-time data will be used to develop group diag-
nostic methods, as opposed to discrete survival-times data. A discussion of fitting
a discrete survival-time model to data is presented in Manda & Meyer| (2005).
Furthermore, time-independent covariates is assumed. The inference under the
random effect Cox model (1.1) considers two sets of data: fixed and random ef-

fects.

Suppose t;; is the time subject i in cluster j leaves the study, either by expe-
riencing the event (d;; = 1) or by surviving to the end of study (d;; =0). If the
subject experiences the event, then its contribution to the likelihood is f(t;;|3,b;)
but if the subject survives, its contribution to the likelihood is S(¢;;|5,b;). Thus,
assuming independence of subjects within a cluster given random effects, the con-

tribution of subject ¢ in cluster j to the likelihood is given by:

Lij(t18,b5) = [f (ti518,0:)1°7 x [S (ti518, ;)]
= [A(t:5]8,b;)S (i;18,0,)]°7 x [S(t:5]8,b;)] % (1.4)

0ij caop(XT3+2Tb,
= [ho(t)exp(X [ B+ Z[b;)| ™ x [So(t]8,by)] =P\ Xl 7k



The whole likelihood, conditional on the random effect b;, is

M nj
7f|67 H HLZ] t|6a
j=1li=1
M1 8ij T T
= LTI [rottern(0es + 28] xSyt 2500,
j=1li=1

(1.5)

Now, at second stage of the model (1.1) the random effects are considered in
the likelihood. Thus, the complete joint likelihood for 5 and b is a product of the
whole conditional likelihood in (1.5) and the likelihood of the random effects b,

and it is given by:

M
j=1

M 1y T T M
IT T1(ho(t)eap(X5 + Zb;)1% x [So(t) P X2t & TT f(by)

7j=1li=1 j=1
(1.6)
where t =t1,t,...,t); with each component a n; x 1 vector of survival times, b =
b1,ba, ..., by with each bj; a g; X 1 vector of random variables, X = X1,Xo,..., X/
where each element is n; x p matrix of covariates with fixed effects, and Z =

Z1,Zs,...,Z); with each element a n; X ¢; matrix of covariates with random effects.

The maximisation of the likelihood equation (1.6) requires specification of the
distributions of the baseline hazard function, hg(t), baseline survival function Sy(t),
and the random effects f(b;) (Ripatti & Palmgren, 2000; Manda, 2001). In this
study, the multivariate normal distribution was assumed for the random effects.
One approach that is used to obtain the maximum likelihood estimators for the
observed data is through engaging marginal likelihood for § and D (Manda) 2001]).

This is done by integrating out the random-effects b; from the complete joint
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likelihood function (1.6) in all clusters, that is,

L(3,D) :/O:C.../_o:O[L([S,b|t,X,Z)]dbl...dbM

-/ 0:0 / °:O {ﬁ ﬁ[ho(t)emp(xg;/ﬂz}]?bj)]% x [So(t)]emp(X£ﬁ+Z£bj>} x T1 £ (by)dbr by,

o "~ (1.7)

The challenge with the marginal likelihood (1.7) is that the integrals are not

of closed forms. Iterative algorithms such as EM algorithm (Manda) 2001) are
therefore used to get the estimate for § and D. Alternatively, joint likelihood
function (1.8) can be used to obtain maximum likelihood estimators for both fixed
and random effects simulatenously. This is what is done in the penalized partial
likelihood estimation method (Ripatti & Palmgren) 2000; Palmgren & Ripatti,
2002). With this method, the partial joint likelihood function for § and b; is
constructed from a product of conditional density of T" given random effect b; and
the density of random-effects f(b;), which is very similar to methods that treat
random effects density as a penalty function (Ripatti & Palmgren, 2000; Palmgren

& Ripatti, 2002; Therneau), 2015)). The penalised partial joint likelihood function

is given by:
6..
M1 exp(XLB+ ZLb;) N
L,(3,blt,X,Z) = Y Sl < TT £ (b))
g ]1;[121;[1 Sho1 Ri(tij)exp(X 8+ Z b)) ]-1;[1 ’

(1.8)
where Ry(t;;) is an indicator showing whether k-th subject is still at risk, that is,

not yet experienced the event, at event-time ¢;;, and d;; is the censoring indicator.

The estimators B and l;j are obtained by using numerical techniques, such as
Newton-Raphson method, because the penalised partial log-likelihood from the
likelihood (1.8) is not analytic for one to solve for the parameters. This is done
by alternating between iteratively solving the score functions Ug and Uy; obtained
from equation (1.8) for § and b; when Ug and Uy; are equated to zero. Then,

the Laplace approximation is engaged to complete the estimation of covariance

11



parameters 6 in D by using the estimators B and l;j to update covariance elements

in D through maximizing the approximate profile likelihood (Palmgren & Ripatti,

2002; |Abrahantes & Burzykowskil 2005) given by:

82
obobT

1 (3(6),5(6),6) ~ — 2 iogD(6) |~ Jlog -~ 1,(3.B)| ~ 3B D (@b, (1.9

DN | —

where lp(B ,B) is estimated penalised partial log-likelihood.

~

However, estimators for standard errors for 5 obtained from Laplace approxi-

mations are said to be slightly biased as they ignore variation that is brought by

the estimated covariance D (]Palmgren & RipattiL |2002|). Instead, the inverse of

observed information matrix of (1982)) is used to obtain standard errors for

3 and D (Louis, [1982; Vaida & Xu, 2000; Palmgren & Ripatti, 2002; [Abrahantes|

& Burzykowski, 2005)), which is given by:

A A 821 (tZ’B‘B’é) P ] lﬁl (t276|37é) Q27 ])
1 _ _ O7ip\tif, 05 - 1 p\lij, 0j - ,
I (ﬁ,@)-E([ 3(B,é)2 |tij, 5,b;| —var 8(3,@) |tis, 5,05 |,
(1.10)

where off diagonal elements are zeroes.

Other numerical estimation techniques that are used for model (1.1) param-
eter estimation include the EM algorithm (Manday, 2001), the Monte Carlo EM
algorithm and the Bayesian MCMC (Ripatti et al., [2002; Hadfield, |2010; Manda,

2011). These are implemented in R software through packages like coxph (Fox,

2002), phmm (Donohue & Xu, 2010), and 1me4 (Bates, [2010).
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1.3 Outlier and influence statistics in multivari-
ate survival data

The subject of outlier and influence analysis has received considerable attention

in the last four decades. This spans various types of statistical models, such as

linear model (D. Cook|, 1977, |Andrews & Pregibon 1978 ID. Cook, |1979; Belsley

et al., 2005; D. Cook & Weisberg, [1982)), generalised linear model (Pregibon) [1981;

'Andersen), 1992; [Sarkar et al. [2011)), and linear mixed model (Langford & Lewis,

1998; [Fung et al.l [2002; [Z. Pan & Linl, [2005; [Zewotir & Galpinl, [2005; [Cerioli, [2010;
Nieuwenhuis et all 2012; Turkan & Toktamis, 2012). In linear mixed models,

group outlier assessment is accomplished through some computation of distance

of observations from location measures (Cerioli, 2010). Such techniques have not

been studied for clustered survival data. Moreover Langford & Lewis| (1998), upon

studying outliers in multilevel linear models, proposed further research in non-

linear multilevel models.

In linear and linear mixed models, the influence examination involves perturb-
ing some metric such as log-likelihood by allowing different weights to its compo-

nents. Case deletion is a special example where all cases are given the weight of

1, except the case of interest which is given 0 weight (Zhu et al., 2001). These

approaches are directly applicable to other exponential family models in which

the observations are independent and identically distributed (Tang et al. 2000;

Lee & Xu| 2004). Because of the independence of the components of the metrics,

the impact of individual subjects can be precisely quantified by merely removing

a term from a metric corresponding to the case(s) of interest (Zewotir & Galpin,

2005}, [Zewotir}, 2008]).

As for multinomial models, the terms in the likelihood function corresponding

to the cells are not independent. Thus, it does not make sense to merely perturb
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a term in the likelihood function. Simultaneous perturbations of cell probabil-
ities that take into account dependences have been developed and successfully
used to detect influential multinomial observations (Nyangoma et al., |2006). Al-
though Song et al.| (2007)) demonstrated efficiency of maximization by parts (MBP)
algorithm proposed in |Song et al.| (2005) over expectation-maximisation (EM) al-
gorithm when determining influence of outliers on model fit in linear mixed-effects
model using multivariate ¢ distribution, they acknowledge that use of the approach

to other model setups such as clustered survival model remains to be investigated.

With the Cox proportional hazard (PH) model (D. R. Cox, |1972), a subject
contributes to the partial likelihood that is summed over several risk sets. Thus,
dropping one observation affects the likelihood function over many risk sets, mak-
ing assessment of case influence a bit complex (Cain & Lange, 1984). While the
delete-one approximation can be obtained analytically from a one-step Newton-
Raphson iteration on the maximum likelihood solution in problems involving like-
lihood from exponential families (Pregibon| |1981), it is not easily done with the
partial likelihood techniques. In the partial likelihood, the one-step approxima-
tions are obtained by re-doing a Newton-Raphson step (A. Cook, 2008), thus
re-computing and re-inventing the information matrix for each observation, which

is computationally expensive (Wei & Su, (1999)).

To develop influence examination methods in linear mixed-effects model, the
approach by |Zewotir & Galpin| (2005) is to use basic building blocks of case dele-
tion, through techniques proposed in (Christensen et al. (1992), which necessitate
re-calculation of updated model parameter estimators resulting from dropping a
data record. Then, various residuals for this model are developed by simply sub-
stituting the updated estimators in the existing diagnostic methods from linear
models, such as Cook’s distance (D. Cook, 1977)). Zewotir| (2008)) extended the

approach of updating formulae to assessing joint influence of two or more cases
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to the linear mixed-effects model. Such an approach has not been exploited for
influence assessment of the clustered survival model (1.1). There have been how-
ever advances in software development for parameter estimation in the clustered
survival model, as demonstrated by Fox] (2002)); Leucuta & Cadariul (2008)); Munda
et al.| (2012)); Loy & Hofmann (2014). But the model still lacks structured diagnos-
tic methods. The various diagnostic measures developed for linear mixed-effects
model as discussed in this section may not directly apply to the clustered survival

model (1.1), which invites further research for this model.

1.4 Purpose of the study

This study aimed to derive, validate and apply group outlier and influence statistics
for the clustered failure-time data analysis. This involved extending similar statis-
tics derived for the linear, liner mixed-effects, and univariate failure-time models
to develop appropriate diagnostic statistics for the clustered survival models. In
particular, the martingale-based residuals for univariate Cox model (Therneau et
al., [1990) and concepts of visual inspection of standardised residuals for group
outlier detection in linear mixed model (Langford & Lewis| [1998) were extended
to develop group outlier residuals for the clustered survival models. Influence ap-
proximations based on one-step Newton-Raphson method for maximum likelihood
estimators (Therneau et al., |1990; Cain & Lange, [1984; Storer & Crowley, 1985))
were extended to derive the influence statistic for the clustered survival models.
The performance of the proposed methods was evaluated using extensive simula-
tion studies and the proposed statistics were implemented through an analysis of

mortality of children under the age of five years in Malawi.
The next chapter reviews the residuals and influence measures in various mod-

els, with existing application in clustered survival data. Then the derivation of

the proposed method for group outlier analysis in multivariate survival models is
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presented in Chapter 3 together with its numerical examples. This is followed by
the derivation of the proposed method for cluster influence analysis in Chapter
4. The simulation study and application for influence method are presented in
Chapter 5. Then Chapter 6 is the last one, it discusses the findings and provides

the conclusions of this study.
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Chapter 2

A Review of Diagnostic Statistics

This chapter discusses various residuals and their use in different statistical models.
The current application of some of the diagnostic statistics in clustered survival

data is reviewed.

2.1 General assumptions of statistical models

For single-valued response linear models, the structure falls into the form:
y = XS +e, (2.1)

where y is n X 1 vector of responses, X a n X p design matrix of covariates, 5 a
p x 1 vector of regression parameters, and € is n x 1 vector of unobserved random

errors from N(0,021).

The general assumptions for these linearised models can be summarised into
the following: a) the observed covariates X; on subject i jointly affect the mea-
sured response Y; linearly and additively; b) the errors € for any two subjects
are independent; c¢) the errors have constant variance, and d) the errors have
normal distribution with mean zero (Yang, 2012). The linearity and additivity

assumptions also apply to the non-linear clustered survival model (1.1), where
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the covariates are related with the logarithm of the hazard function. The extra
assumptions for model (1.1) are that e) the observed covariates X;; for subjects
are independent of measured event-times ¢;; or the hazards of failure for any two
subjects are proportional to one another, referred to as proportional hazards (PH)
assumption, and that f) the random effect values b; are 7id Gaussian with mean

zero and some positive covariance.

Similarly, all assumptions of linear model (2.1) and some for clustered survival
model (1.1) apply to the linear mixed-effects model (Laird & Ware| 1982 Zewotir
& Galpinl, 2005, |(Gharibvand & Liul, [2009; Turkan & Toktamis, [2012;|J. Pan et al.,
2014; D. Zhang et al., [2016) given by

y=X[B+Zb+e, (2.2)

where {y,X,e} are as defined in model (2.1), only that the vectors and matrices
are stacked over time or location (cluster), {Z,b} are as defined in Section 1.2,
€ ~ N(0,02I), while b~ N(0,D). Then, var(y) = var(XJ3) 4+ var(Zb) +var(c) =
0+ Zvar(b)Z' + 021 = ZDZ" + 621 = G is the overall covariance matrix, which
is the sum of covariances from individual errors and random effects. Also, the
cluster random effects and individual subjects random errors are assumed to be
independent, that is b 1 e. The diagonal elements of G are referred to as variance
components. These constitute the model parameters to be estimated along with
the vectors of fixed effects 5 and random effects b (D. Zhang et al., 2016]). The
model assumes that the fixed-effects parameters are not static but vary across

clusters and the modelling tries to capture the varying correlation within cluster.

When Z = I, model (2.2) takes a special case called multi-level or random-

intercept model (Skrondal & Rabe-Hesketh) 2009) given by:

Yi; :X£5+bj+€ij, (2.3)
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where Y;; is the observed response value for subject 4 in cluster j, b; is the cluster-
specific random effect which is the deviation from mean intercept [y, while the
rest of the terms are as defined in models (1.1), (2.1) or (2.2). The model (2.3) has
fixed-effects covariates only whose intercept varies across j clusters (Langford &
Lewis|, [1998; Zewotir & Galpin, 2005; Skrondal & Rabe-Hesketh, 2009). Therefore,

the modelling estimates the constant correlation within cluster.

The modelling of data in these various models aims to make statistical estimates
and predictions about the response variable Y or time variable T for survival mod-
els in the context of the assumptions holding true. Diagnostic statistics therefore,
serve to examine fulfillment of the model assumptions so as to generate evidence
on accuracy and adequacy of the fitted model. The assessments are done through
visual inspection or numerical tests (Aguinis et al.,; 2013). In the next few sec-
tions, the diagnostic statistics for verifying these assumptions in different models

are reviewed.

2.2 Diagnostics for linearity and additivity as-
sumptions

For the generalised linear model (2.1), E(y) = E(Xf3)+ E(e) = XS and var(y) =
var(XB) +var(e) = 021. Because of the normal probability distribution assump-
tion for € in the model (2.1), y ~ N(X}3,02I). Therefore, the likelihood function

for 5, denoted L(f|y,X) is given by:

L3y X) = (2ro?) ey~ 5y - X0 - X5) ) (24

hence, the log-likelihood function, denoted I(S|y,X) is found by taking the loga-

rithm of the likelihood function (2.4) which gives:
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52 (X9 (y=X0) (2.5

[(Bly,X) = —n/2log(2ra;) -
Differentiating the log-likelihood function (2.5) with respect to 3 gives the expres-

sion:

d 2

—1(Bly,X) = - X" (y - X)
s 2103 (2.6)
= 5 (XTy-X"Xp).

)
O¢

The expression (2.6) is called the score vector or score function, which is a function
of regression parameters and it shows how the likehood function changes with small
changes in each 3. Therefore, the Maximum Likelihood (ML) estimator for g is
found by solving for 3, when the score function (2.6) is equated to zero. Thus the

ML estimator for [ is given by:

4=(XTx)"'xTy. (2.7)

The Maximum Likelihood estimator /3 in (2.7) is the same as can be obtained using
Least Square estimation (LSE) procedure. The LSE method finds the estimator B

that minimises the sum of squared errors in the model.
One useful diagnostic for model (2.1) is the residual, defined in Chapter 1 as

the difference between the observed response vector y and the estimated response

vector y, given by
(2.8)

where W = X(XTX)~1XT is the n x n hat matrix, which is a matrix responsible
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for changing elements of y into y. When the residual (2.8) is plotted against val-
ues of each independent variable X, the graph is used to examine fulfillment of
the linearity assumption of model (2.1) for the variable X. Where the plots show
no pattern but pure random points, it means the model is linear in the covariate
X. If some pattern is noticed, it implies the response variable Y is related with
some transformation of the explanatory variable X (Yang, 2012)). The additivity
assumption is examined using plots of the same residual (2.8) against the fitted
values Y; = XiﬂA . The plots are expected to consistently wag around 0 to show
that there is no nonlinear term in the covariates to be added to the model. The
same plots can also be used to verify the constant variance or homoscedasticity
assumption (Yang) 2012). In this case, the shape of the graph is supposed to be
the same along the horizontal axis. If the graph widens up or narrows down, it

will imply violation of constant variance assumption of the error term in the model.

As an example, linearity and additivity assumptions are examined on a covari-
ate in a linear model that was fitted to some simulated data. The data had 50
observations and were simulated from a linear model with two covariates using
Stata software version 12. The values of the covariates were sampled from normal
distributions, i.e. X1 ~ N(3.2,6) and X5 ~ N(10,3.5) and the model’s error term

was generated from N(0,2.1). The model used is given by:

Y; = fo+ X181+ XipPa + € (2.9)

where Y; is the outcome value for subject i, €; the random error for observation i,

the parameters Sy = 1.5, 1 =2, and B2 = 0.5.

Upon fitting the model to the data simulated by model (2.9), the residual
and fitted values were computed and the results in Figures 2.1 (a) and (b) are
typical examples of a model that fulfills both linearity and additivity, plus constant

variance assumptions, respectively.
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(a) Scatter plots of residual versus X; for data (b) Scatter plots of residual versus Y; from model
generated from model (2.9), showing fulfillment (2.9), showing fulfillment of additivity and con-
of linearity assumption. stant variance assumptions.

Figure 2.1: Examples of graphs for testing linearity, additivity and constant vari-
ance assumptions in linear regression models. Source: Researcher.

To balance off the differences in leverages of different subjects, a scaled residual,
which is also referred to as studentised or standardized residual, is used to serve
the same purposes of a residual highlighted above (Sarkar et al., 2011). The

studentised residual is given by:

A = [var(e)]/?e

= [var[(1-W)Ty]]""/% (210)
[(1 — W) var(y)(1 - W)} e é

61 —W) /%,

where W = X(XTX)_lXT is a leverage matrix as defined before and computation

of variance involves its diagonal elements wy; (Loy & Hofmann| 2014).

With the Cox univariate model (D. R. Cox |1972)), the linearity and additivity
relationships of covariates are with the logarithm of the hazard function h;(t|3),

given by:

hi(t8) = ho(t)exp(X] B). (2.11)
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A counterpart residual in survival analysis analogous to residual (2.8) for linear

models is the martingale residual given by:

m(ti) = 0; — H(t;) = 6; — Ho(t)exp(X] B), (2.12)

where §; is censoring status of i-th subject and ]:Io(t) the fitted cumulative baseline
hazard function. This measures excess events at each observation time t; by com-
puting the difference between the observed and expected number of events over
the interval [0,¢;] given the model (Therneau et al., [1990; Fitrianto & Jiin), 2013)).
The values of the martingale residual (2.12) are expected to be uncorrelated with
mean zero when the model is correct (Therneau et al., [1990)). Individuals who
fail earlier than expected have positive martingale residuals and those who survive

longer have negative martingale residuals.

The assessment of linearity assumption for Cox model (2.11) is also done
through graphical inspection of the values of martingale residual (2.12) plot-
ted against each covariate X. The plots are expected to consistently average
around zero when the variable X has correct linear form with the logarithm of
hazard function logh(t;|3) (Therneau et al., 1990; Fox, 2002; Nguyen & Rocke,
2002; (Wilson, 2013). This is assessed with the help of smoothing functions such
as ‘Lowess’ (Fox, 2002)). The ‘lowess’ smoother is supposed to be a horizontal
straight line passing through zero (Fox, 2002; Wilson, 2013). An example is
given in Figure 2.2, where the martingale residual has been computed from the
Cox PH model that was fitted on recidivism data discussed in |Fox| (2002)). The
data are from an experimental study of 432 male prisoners, who were observed
for re-arrest during the first year after release from jail, the data are available

on ulr, http://socserv.mcmaster.ca/jfox/Books/Companion/data/Rossi.txt (Fox,

2002). The fitted model is:
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~ ~

hi(arrest) = ho(arrest)exp(0.698 x fin+0.944 x age+0.71 X race

+0.89 x wexp+ 1.53 x mar +0.91 X paro+ 1.09 x prio+ 0.83 x edu)

(2.13)

where arrest’” = duration of time of release from jail to re-arrest,
ho(.) = baseline hazard,

‘age’ = age at time of release,

‘fin” = whether a person received financial aid or not after release,
‘race’ = race of a person,

‘wexp’ = whether a person had full-time job or not prior to arrest,
‘mar’ = marital status at time of release,

‘paro’ = whether a person was released on parole or not,

‘prior’ = number of prior convictions,

‘edu’ = highest education level (Fox, [2002]).

Two of the covariates in the fitted model (2.13), that is, age and prio were
significant, and hence a reduced model with these two covariates was used for post-
estimation analysis examples. Figure 2.2 is an example of martingale residual for

age, which shows that the linearity assumption was slightly violated by the model.
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Figure 2.2: Martingale residual with Lowess smoother for recidivism Cox model
(2.13). Source: (Fox, 2002)

The current use of martingale residual is limited to individual level and not
clustered data. Hence, proper extensions have been defined in this current work

for the clustered survival data.

2.2.1 Linearity and additivity assessments in mixed-effects
models

From model (2.2), y ~ N(X3,ZDZ” + ¢2I) and in this work, G = ZDZ” + ¢2I.
Based on the normality assumption for y, the conditional likelihood function for

B is given by:

L3Iy, X,b) = (20) "PIG| Peap{ (- XA Gy -XB)}. (@19
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This gives the conditional log-likelihood function as:

1

1(Bly. X b) =~ Slog(2m) ~ Jlog|G| — S (v~ XB)TG Hy-XB).  (2.15)

The maximum likelihood estimator B of the parameter [ is found by taking the
partial first derivative of the conditional log-likelihood (2.15) with respect to 3
and solve for § when the result is equated to zero. The partial first derivative of

the conditional log-likelihood function (2.15) is:

UBly.X.b) _ yrg-1(y_xp)
5 (2.16)
_xTgly—xTG"'X5.

Then, equating the equation (2.16) to zero and solving for 3 gives the ML

estimator [ as:

XT'G ly—-XTG 'Xp=0
XT'c 'xXp=x"G 1y
(2.17)
X' X)) YxTe1X)p=XT'e X)) 'xT'Ggly

S B=XT'e X)) ' xTaly.

The estimator for b is found by maximising the complete joint likelihood function
for b and y (Xiang et al 2002; [Turkan & Toktamis, 2012; |D. Zhang et al., 2016]).
Both variables have the normal distribution. Hence, the complete joint likelihood
function for b and y is just the product of the likelihood functions for b and con-
ditional likelihood for y in (2.14). Once again, from model (2.2) e ~ N(0,021),
y ~ N(XB,ZDZT+JSI), and b ~ N(0,D). Therefore, the complete joint likeli-
hood function will be:

exp{—3(y —XB—2b)T(021) "} (y — X3~ Zb) — 1b"D~'b}
(2m) (/2D /2| o2/

L(b7 B’y’ X‘? Z) =
(2.18)
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Therefore the complete joint log-likelihood function is:

I(b.Bly. X, Z) = —%[(y—m —Zb)"(21) " (y = X3 —Zb) + b D" 'b] —log{ (27)"/*|D|"/?|02T|"/?}.

(2.19)
Similar to fixed effects, the estimator of random effects b is found by taking first
partial derivative of the joint log-likelihood (2.19) with respect to b and solve for
b when the result is equated to zero (Xiang et al., [2002; Turkan & Toktamis, 2012;
D. Zhang et al., 2016). The partial first derivative of (2.19) with respect to b is

given by:

al(b>ﬁ‘y7X>Z)_2 T/ 21\—1 2 —1
5h —2Z (e2I) " (y — X3 —Zb) 2D b

=270 -1y — 27 (1) ' X3 - 2" (1) ' Zb—-D b (2.20)

— 2" (021 (y —XB) — (2" (s> 'Z+D )b

It follows that equating the result (2.20) to zero and solve for the random effects

b yields the ML estimator or predictor for b given by:

7z (o) Ly - XB) = (2" (o’T) ' Z+ D Hb =0
(2" (o) 'Z+D b =Z" (o21) (y - XB)
(ZT (D) ' Z+ D H N ZT () Z+ D b = (2T (o*1) 12+ DY) 12T (02T) L (y — XB)
b=(Z" (1) 2+ D H 12T (o2) L (y — X))
= (Z"1Z2+D o212 1y — Xp3)
=DZ"(ZDZ" +o’1) My — X}3)
= DZTG (y-Xp).

(2.21)

The result in equation (2.21) can also be obtained by applying the formula for

computing conditional mean of a joint multivariate normal distribution of y and

y X3l | ¢ zZD A
b, given by: ~ MV N{ , }. Thus, b is found by calculating

b 0 DZT D
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conditional expectation of b given y, that is: E(bly) = E(b)+cov(b,y Jvar—(y)(y—

E(y)).

Then, the fitted value y, residual €, and studentized residual A for linear mixed-
effects model (2.2) must be a linear combination of estimated fixed- and random-
effects (Zewotir & Galpin, 2005; Nobre & Singer, 2011; Zare & Rasekh, 2011}

Turkan & Toktamis| 2012). The fitted value is thus given by:

v =X[+7Zb
=XB+2ZDZ"G (y - X5)
=X0+(G-1,)G ' (y - XJ)
=X0+ (L~ G )y —Xp)
=L, -G Hy+ (1, — (I,-G )Xz (2.22)
= (I,-G Hy+G1Xj3
=y-Gly+a I XX'a'x)"'xTGgly
=L - (G'-¢'XX'¢'X)"'XTG )]y

= (I, - R)y,

where R = G ! = G 'X(XTG1X)'XTG™! is shorthand for the symmetric
matrix in equation (2.22) that transforms observations into residual (Zewotir &
Galpin, 2005} [Turkan & Toktamis, 2012). As in univariate linear model, the fitted

value is linear in y for the linear mixed-effects model.
The residual vector follows from the fitted value as:

e=y—-y=Ry, (2.23)

and its studentised form is:
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A=o6""R™1/%, (2.24)

Once the residual statistic (2.23) or (2.24) is obtained, the linearity assumption is
checked in a similar manner as in univariate linear model, that is, through plots
of the residual against each covariate. To discretely study the fit of linear mixed
model (2.2), [Schabenberger (2005)) and Loy & Hofmann| (2014) use a segmented
residual with three levels. Level-1, also called conditional residual is just the resid-
ual form defined in equation (2.23). Then, plotting the residual (2.23) against the
fitted values (2.22) will assess the model misspecification, that is, linearity and

additivity (Schabenberger, [2005; |Loy & Hofmann| 2014]).

The level-2 residual, called random-effects residual is just the estimates of
random-effects in equation (2.18) obtained through restricted maximum likeli-
hood (Zewotir & Galpin, 2005; Schabenberger, [2005; Turkan & Toktamis, 2012)) or
through empirical Bayes prediction or other similar methods (Skrondal & Rabe-
Hesketh), 2009; Loy & Hofmann, 2014). The estimators (2.21) of random effects
are said to be the best linear unbiased predictors (BLUPs) of random effects b in
model (2.2), due to the fact that they are linear in y, unconditionally unbiased,
and ’'best’ because they minimise marginal sampling variance of prediction error
(Zewotir & Galpin, 2005; Skrondal & Rabe-Hesketh| 2009). Hence, they are used
to assess the normality assumption of the random-effects through normal quantile-
quantile (Q-Q) plots (Loy & Hofmann| 2014)). They also serve to examine linearity

assumption of the random effects in the model.

In addition, the random effects predictors help in investigating additional ex-
planatory variables in data that contribute significantly to the model. This is done
using scatter diagrams, for continuous covariate, and box plots, for categorical co-
variate, plotted against averages of these potential covariates (Loy & Hofmann),

2014). The level-3, marginal or composite residual consists of the fixed-effects
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residual only, as in equation (2.8). This diagnostic is used to analyse the marginal
covariance structure of the model, among others (Schabenberger, 2005; Loy & Hof-

mann|, 2014).

The definition of a residual in linear mixed-effects model reviewed in this sec-
tion, i.e., with both fixed- and random-effects parts of the model, has been adapted

to develop diagnostics for the clustered survival model in the present study.

2.3 Assessing distributional assumptions of the

fitted model

With the generalised linear model (2.1), the normality assumption for the error
term is usually checked graphically using, for example, histograms, quantile quan-
tile Q) — @ or stem-and-leaf plots of the residual vector € versus subjects’ indexes
(Yang, 2012)). The idea is that if the model is correct, these plots should follow
the normal distribution. Alternatively, the residual is plotted against the fitted
values y and the graph is inspected if it matches the normal distribution. A sub-
stantial criticism for use of graphical approach in assessing the normal distribution
assumption is that it pools all covariates together in making conclusions for the
model fit, yet the model assumes the linear relationship between the variable X
and response Y is conditional on each covariate’s values mapping to the mean of

the response variable (Yang, [2012)).

As for Cox univariate survival model (2.11), the formulation does not provide
for the error term, but assumes all sources of individual noise in the event-time
variable 7' are captured by the observable independent variable X. The esti-
mated cumulative hazard function H (t;) also called Cox-Snell or generalised resid-
ual (D. Cox & Snell, [1968; [Nguyen & Rocke, 2002; Wilson), 2013) is used to assess

the general model fit. Theoretically, the cumulative hazard function H(t;) from
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equation (1.2) should have a unit exponential distribution (Hosmer Jr et al., [2011)).
This is because the survivorship function S(¢;) presented in equation (1.3), which
is used to compute the cumulative hazard function, has the property S(k) < S(w)
for k > w and hence S(t;) is a non-increasing function that is bounded below at 0.

For this reason, the probability distribution of S(¢;) can be specified as follows:

P(S(t;) <z)=P(t; > S Y(2)) = S(S"Y(2)) = =, (2.25)

where S~1(z) is the inverse of S(t;),  the maximum value in the range of S(t;),

and the inequality sign is reversed due to the fact that S(¢;) is a decreasing function.

The above result implies that the density of the variable S(t;) is f(S(t;)) =1
since its cdf P(S(t;) <x) = [y f(u)du = x. Therefore, S(¢;) has a Uniform(0,1)
distribution, with T'€[0,00). Then, through transformation of random variables; it
can be shown that the cumulative hazard function H (¢;) will indeed have exponen-
tial distribution with parameter 1. Further, H(¢;) is an increasing function with no
bound as time ¢; gets large, i.e. as t; — oo, H(t;) = —log[l — F(00)] = —log[0] = co.
The estimated cumulative hazard function or generalised residual from the fitted

Cox model is given by:

resi = H(t;) = —log[S(t;)] = Ho(t;)exp(X] B). (2.26)

The assessment of model fit is done by plotting the values of the generalised
residual (2.26) against its raw values. When the graph is a straight line through the
origin with gradient 1, it means estimates of the survivor-times from the model
S(t;) match the true survivor-times S(t;) in the population and hence the Cox
model is correctly specified (D. Cox & Snell, [1968)). The points above the plot-
ted line imply the model over-predicts failure and those below it suggest under-

prediction of failure (D. Cox & Snell, |1968; Nguyen & Rocke, 2002; Wilson, 2013]).

Upon computing the Cox-Snell residual for the recidivism model (2.13), the results
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in Figure 2.3 indicate that the model generally fitted the data well, with few cases

that were over-predicted.

-logiskmesFsury)

skm.cs$time

Figure 2.3: Estimated survival curve for recidivism Cox model (2.13). Source:
(Fox, 2002)

Few criticisms for the Cox-Snell residual (2.26) relate to difficulties in its in-
terpretation (Zhao et al., 2011; Wilson, [2013) and over-reliance on sample size
(Nguyen & Rocke, 2002)). Unlike the @ — @ plots and histograms that are used for
examination of normal distributional assumptions in linear models, the Cox-Snell
residual plots are based on exponential distribution assumption, which is hard to
interpret by non-technical audience (Wilson, 2013). Further, closeness of the Cox-

Snell residual distribution to unit exponential depends on sample size (Nguyen &
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Rocke, [2002). In addition, [Zhao et al| (2011]) observed that the plots of Cox-Snell

residual may not give exact points of departure when the survival model is incor-

rectly specified.

The main assumption for the Cox PH model (2.11) is the PH assumption stated

in Section 2.1. Each covariate is assessed against this assumption using Schoen-

feld residual (Schoenfeld, [1982; |Fitrianto & Jiin, 2013)). This residual determines

whether the difference between observed and expected value of each covariate X

at each time point ¢; is independent of time t;. The computation makes use of

the elements in the score function for 3, i.e. Ug (D. R. Cox, [1972; (Grambsch &

'Therneau, |1994). The partial likelihood function for univariate Cox model (2.11),

which takes contribution of subjects in the risk sets (D. R. Cox] |1972; |Grambsch|

& Therneau, |1994), is given by:

n r o
. < exp(X; B)
016.%) = U |5, o ennxtay |

(2.27)

where Ry (t;) is an indicator variable showing whether k-th subject is still at risk,
that is, not yet experienced the event, at time ¢;, and ¢; is the censoring indicator.
The log-likelihood function is:
- T - T
LBI6,X)=> 6 | X B—1log > Ri(ts)exp(XipB)| - (2.28)
1=1 k=1
From the log-likelihood function (2.28), the score function for § is found by

differentiating the quantity (2.28) with respect to /3 as:
_ di(B[t,X)

dp
SPy Ry (t) Xkexp(XLB)
5 | Xi—
Sri Ri(ti)exp(XL3) (2.29)
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Sy Oopey Ri(t) Xpeap(X]B)
where X(5) = =&t (i ean(XT 5)

ate’s values for members of the risk set. Therefore, the Schoenfeld residual is the

and it is a weighted average of each covari-

component 7g; in the score vector (2.29) given by:

rs; = 6i[Xi — X(B)). (2.30)

The values of the residual (2.30) are uncorrelated with mean 0 when the model
is correct (Schoenfeld, 1982; Nguyen & Rocke, [2002)). To improve the diagnostic
power of this residual, scaled Schoenfeld residuals are used (Grambsch & Therneaul,
1994). The plots of rg; or its scaled version against the observed survival times ¢;
show a random pattern around zero if the PH assumption holds true. If there is any
systematic pattern, it suggests that there is evidence of dependence of the covariate
on time t; (Fox, [2002; Nguyen & Rocke|, 2002). For example, upon computing the
Schoenfeld residual for the recidivism model (2.13) for the variables prio and age,
the results in Figure 2.4 show that the prio variable fulfilled the PH assumption
as many points are departing the smoothing spline band. While, the variable age
violated the PH assumption as the smoothing spline band appears to gain more

points as time increases.
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Figure 2.4: Plots of scaled Schoenfeld residual for age and prio against time in the
Cox recidivism model, with smoothing lines and confidence bands. Source: (Fox,
2002)

The scaled Schoenfeld residual also gives a structure for formal test of the
PH assumption (Grambsch & Therneau, 1994; Nguyen & Rocke, [2002). This is

accomplished by the function:

B(t:) =B+ pg(ti), (2.31)

where ¢(t;) is a time-function, 3 the coefficient of a variable X being investigated,
and p the slope of the relationship between g and time t;. The assessment tests

the hypothesis Hy: p=0. The result of the test provides a complementary deci-
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sion to that of graphical examinations (Grambsch & Therneau, 1994; Fox| 2002]).
When Hj is rejected, it means the data provide evidence that the variable X is
independent of time. Otherwise, failing to reject Hp : p = 0 implies the covariate
in question is related to time. In such cases, proper transformation of the log cu-
mulative hazard function, such as stratified regression, is recommended (Mehrotra
et al., |2012). For the stratified Cox model, a covariate enters the model in strata
forms of some specified intervals. In addition, time-dependent Cox regression may
be opted for, if stratification approach is not the best solution (Thomas & Reyes|,
2014).

The PH assumption extends to the clustered Cox survival model (1.1), although

the current form of the Schoenfeld residual (2.30) does not.

2.3.1 Assessment of assumption for the random effect dis-

tribution in mixed-effects models

With linear mixed-effects model (2.2), a common method for assessing the normal-
ity assumption of random-effects is through using random-effect or level-2 residual
(2.18) described by [Claeskens & Hart| (2009); Loy & Hofmann (2014). As already
stated in Section 2.2.1, this is done using normal ) — @) plots, histograms, or stem-
and-leaf plots against subjects’ indexes. The use of random-effect residual for this
purpose is based on the fact that they are the Best Linear Unbiased Predictors
(BLUPs) of the model’s random effects (Zewotir & Galpin, [2005)).

2.4 Statistics for identifying outlying data points

Reportedly, the probability distribution of the residual (2.8) for generalised linear
model (2.1) is slightly skewed (Sarkar et al., [2011)). Through some transformation
of the residual (2.8), a normally distributed quantity is obtained. One of the com-

mon transformations is a 'deviance’ residual and it serves to examine availability
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of potential outliers to the model (2.1). Taking a case of the logistic regression
model, which is a member of the model (2.1) that analyses binary response data,

expressed as:

Yi = o(Xi) +e, (2.32)

where:

xT
P = 113) = o(X) = S )

(2.33)
with Y; is the measured response for subject ¢ with Y; =1 for a subject that
possesses the feature of interest and Y; = 0 otherwise; X; is a covariate value ob-
served for subject ¢; [ the regression coefficient; ¢; the random error for subject

i with unknown probability distribution; and ¢(X;) is the conditional probability

of achieving the feature of interest for subject ¢ whose observed covariate is X;.

The term ¢(X;) in equation (2.33) is also called a logistic function because
it resembles the logistic curve. Further, the link function n = E(Y|X) for model
(2.32) is the logarithm of odds of having Y; =1 given a covariate value Xj;, which

is:

(X

n=E(Y|X)=¢"=log [1_90()(1)

1:x§ﬁ. (2.34)

The i-th subject residual for the logistic regression model (2.32) is a binary term

(Sarkar et al., 2011)) given by:

) ) 1—@(X;) if Yi=1
& =Y, —p(X;) = (2.35)

—o(Xi) if Yi=0,

o
where $(X;) = % is the fitted conditional probability of success given co-

variate values X;.
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The residual (2.35) implies that the variance of the error term as well as the
response variable in logistic regression is a function of the covariates, as var(é;) =
var(Y1X) = p(X;)(1 — ¢(X;)). This is a departure from the convention set in
the general linear model (2.1), where covariates contribute zero variance to the
response. Moreover, plotting the residual (2.35) against the fitted values Y; will
provide some hard-to-interpret information about the model due to the unknown
distribution of the error term in the logistic regression model. Hence, a transformed
measure called Pearson residual is used instead (Sarkar et al., 2011), and it is given

by:

éi S GO
VEX)1—4(X0)  (Xi)(1—p(X))

The square of Pearson residual (2.36) measures contribution of each response

i = (2.36)

Y; to the Pearson chi-square test statistic. But the measure does not follow ap-
proximate chi-square distribution (Sarkar et al. 2011)). To utilise this residual in
assessing problematic observations, it is standardised so as to have an approximate
normal distribution (Sarkar et al., 2011), given by:

VXD = p(X))(1—wir) /(1 —wis)

where w;; is the i-th diagonal element of the estimated hat matrix (or Pregibon

leverage) W = G'*X(XT6&*X)1X7 G and ¢(X,)(1— (X)) is conditional
variance of the response variable given X (Sarkar et al., 2011). The residual (2.37)
helps in identifying influential subjects to model (2.32), when the measure (2.37)

is plotted against fitted values or subjects indexes (Sarkar et al., [2011)).

The rest residuals for the logistic regression model (2.32) build on the Pearson
statistic (2.36) or its studentised form (2.37). One such residual is the deviance

residual. A model’s deviance Dv = 2(I(MS)—I(MR)), where M S and MR stand
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for saturated and reduced model, respectively, measures the distance between a
component of the log-likelihood of the fitted model and the corresponding com-
ponent that would result if each point was fitted exactly. The models that use
maximum likelihood estimation aim at minimising the sum of deviance residuals.
So, these statistics are computed from the fitted model deviance in order to track
potential outliers and mis-specified subjects. The deviance residual for the i-th
subject is the signed square root of the contribution of that subject to the sum for

the fitted model deviance (Sarkar et al., [2011) given by:

di = sgn(Yi — (X)) [-2(Yilogp(X:)) + (1~ Yi)log(1— p(X))]2,  (2.38)

where ‘sgn’ is the sign of the i-th subject residual ¢é;, that is, plus or minus. The
plots of the deviance residual (2.38) against the estimated probabilities ¢(X;) will

show the model’s outliers at cutoff £2 (Sarkar et al., 2011)).

Schall & Dunne| (1988)) use a different approach to study outliers. They specify
a separate model with raw residual € as the response vector and engage some tests
to identify outliers to the this model. The outliers to the residual model are also
deemed unusual subjects to the main model with response variable Y. Others use
the scaled residual (2.10) directly to analyse outliers to a model, as by Chebyshev
theorem not more than 5% of values of the studentized measure (2.10) should be
outside the bounds +1.96, while not more than 1% will be beyond +2.58 (Dobson
& Barnett] |2008; Sarkar et al., 2011). The observations outside these limits are

considered outliers.

With Cox survival model (2.11), the martingale residual (2.12) has the same
weakness of skewed distribution as the raw residual (2.8) in generalised linear mod-
els. This is because the subject’s censoring condition d; in the measure (2.12) can

only take values of 1 or 0, while the cumulative hazard H(t;) has strictly posi-
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tive values in the interval [0,00). This makes the statistic (2.12) to have highly
positively-skewed distribution, with values in the range (—oo,1]. So, the quantity
(2.12) may not detect outliers using values on both ends of its distribution. A
counterpart deviance residual for examining outliers in survival models was stud-
ied by [Therneau et al.|(1990). Taking the baseline hazard of Cox model as nuisance
parameter, Therneau et al. (1990) engaged the Lagrange multiplier maximization
technique to derive the deviance structure from the fitted model’s deviance. In
so doing, the residual (2.12) was transformed into a statistic that is symmetrical

about zero (Therneau et al., [1990; Fitrianto & Jiin) 2013).
Thus, the deviance residual for univariate Cox model was defined as follows:

d; = sqn(m(t;)) [—2(m(t:) + dilog(8; —m(t;)))? . (2.39)

where m(t;) is the martingale residual, d; censoring status, and ’sgn’ is the sign of
the measure (2.9), which is plus or minus. As in generalised linear model, plotting
values of the deviance residual (2.39) against linear predictors logh; will show
potential outliers to the survival model. The values of (2.39) outside the range
+2.5 are usually considered outliers (Nguyen & Rocke, 2002)). Upon computing
the measure (2.39) for the Cox model (2.13), the results in Figure 2.5 show five

people, who were re-arrested earlier than estimated by the model.
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Figure 2.5: Scatter plot of deviance residual versus linear predictor that had co-
variates age and prior conviction in the recidivism Cox model. Source: ([Fox 2002)

This current work extended the definitions of martingale and deviance residuals
reviewed in this section to the clustered survival model (1.1). This was done in
order to explore methods for the group outlier examination in the clustered survival

data.

2.4.1 Outlier identification in mixed-effects models

With the linear mixed-effects model (2.2), the outlier assessment methods are sim-
ilar to those of the generalised linear model (2.1). The only difference is that the
methods are segregated according to levels of data (Langford & Lewis| [1998; [Bell
& Malacova, |2004; |Loy & Hofmann, |2014). For example, Bell & Malacova| (2004))
analysed outlying education outcomes to a multilevel logistic regression model ap-
plied on university applicants in the UK, with two stages: high school progress and

university admissions. While Langford & Lewis (1998) studied outlying schools or
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pupils to the multilevel model using the UK’s local education authority data from
66 schools with 2478 students in 136 school-years. In both cases, the measures that
were used for group outlier examination in the multilevel model were extensions of
those that are used for individual subjects in linear models. In particular, |Lang-
ford & Lewis| (1998) use the distribution of standardised residuals when plotted

against clusters to assess the clusters that deviate from the rest in the model.

As highlighted already in Section 2.2.1, another approach for group outlier
analysis in linear mixed models is to use the random-effects or level-2 residual
(2.21) plotted against group identities (Loy & Hofmann, 2014). The shortfall of
this approach is that it does not fully utilise the fixed-effects component of the
model in computing the residual, which may lead to unrealistic estimates of true
group outliers. This current work has explored group outlier methods for the sur-

vival mixed model that exhaust all the data structures in the mixed survival model.

A general method for trapping multivariate outliers from all levels of data in
linear mixed-effects model was suggested by |Cerioli| (2010)). The approach uses the
re-weighted minimum covariance determinant (RMCD), similar to Mahalanobis
distance (Cerioli, |2010). The MCD component in RMCD is part of the sample
of h data points, n/2 < h < n, whose covariance has the smallest determinant

(Cerioli, 2010). The method is given by:

dz?(RMCD) = (Y;— ﬂ(RMCD))Ti(_]%MCD) (Yi = firmceny), (2.40)
where
R 1
firmen) = > wiY; (2.41)

1€¥ymep

is re-weighted MCD estimate of location and estimate of scatter 5 proportional to
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dispersion matrix is:

o k®ymepymn, X A
2= m_)(fmv) x> wi(Yi—frmen) (Yi— iryvcn)) (2.42)
1€Ypep
with m = 32icy,, ., @i; v dimension of covariance matrix X and k(g p)(m,n,w)

proportionality constant to control for bias (Cerioli, [2010)).

The potential of using dispersion of residuals to examine group outliers in mixed
models as suggested by |Cerioli (2010) has been explored in this current work to

devise the method for assessing group outliers in clustered survival data.

2.5 Diagnostic statistics for leverage and influ-
ence

For the generalised linear model (2.1), a vector of fitted values y is given by:

= X(XTX)"1xTy (2.43)

Therefore, a leverage, also called hat or projection matrix W for the fitted model
is the first derivative of the vector of fitted values (2.43) with respect to y given
by:

dy

dy™

L dX(XTX)"1XTy (2.44
- T 44)
y

=X(XTx)"1xT.

W:

Hence, the leverage of the i-th observation on the i-th fitted value, denoted by wy;

is the amount by which the i-th estimate Y; would change with respect to the i-th
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observed response value (Nobre & Singer, 2011} Sarkar et al., [2011). This is the

i-th element of the main diagonal of hat matrix W.

The leverage w;; is always a ratio, whose range of values is [0,1]. The value
0 means that subject 7 has no effect on Y; and 1 implies the i-th subject has re-
markable effect on the fitted line or that line Y; passes through the data point
(X;,Y:) (Sarkar et al.| 2011). Thus large leverage subjects have influence on the
fitted regression line. The working cutoff from which a leverage is considered large
is 2p/n or 4/n, where p is number of parameters in the model and n sample size
(Dobson & Barnett}, 2008; Nobre & Singer, 2011). The assessment is also done

using graphical methods, that is, by plotting w;; against subject indexes.

As for the linear mixed-effects model (2.2), leverage is defined according to
the level of analysis of the data. This is based on the marginal fitted values and
conditional fitted values for the model. The conditional fitted value for linear
mixed-effects model (2.2) can be expanded using the ML estimators for fixed and

random effects given in equations (2.17) and (2.21) as:

y=XB+7Zb
=X3+ZDZTG Hy—X}p)
=X(XTe ' X)"XTG ly+ZDZ2TG Yy - X(XTG1X)XTGly)
=XX'e 'xX)"'xXT'G ly+zpz" (G—l - G—1X(XTG*1X)—1XTG*1) y
— 192

(2.45)

where the component 3*! = X3 = X(X'G1X)"1X"Gly is the conditional fit-
ted value for fixed effects and y** = Zb = ZDZ” (G_l — G_lX(XTG_lX)_lXTG_l) y

the marginal fitted value for random effects.
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This leads to the definition of a generalized leverage matrix for marginal fitted
values or simply generalised marginal leverage matrix (Nobre & Singer] [2011)),
given by:

3"
oyt

oxxre'x)Ixfaly (2.46)
- oy

=XxXT'e'x)"'xTg .

Q

The generalised marginal leverage matrix Q; is the overall conditional leverage
for the fixed effects (Fung et al., 2002; Nobre & Singer|, |2011). This will measure

influence of an observation or cluster on the conditional fitted value Sf*l.

With the second level of the data, the generalised leverage matrix for the

random effect component is given by:

= 5T

0zDz" (G- ¢'X(XTG'X)7IX"G )y (2.47)
- 3T
=zpz" (G7' - ¢7'X(XTG'X)"'XTG ).

Qo

The leverage matrix Q4 can estimate influence of a subject or cluster on marginal
fitted values of the random effects. The part ZDZT of the generalised marginal
leverage Q represents proportion of within-cluster variability explained by the
presence of random effects and it is referred to as generalised random component
leverage matrix (Nobre & Singer, 2011). This component depends on random
covariates and covariance matrix for random effects unlike the entire Qy, which
depends on both fixed and random effects. Hence, ZDZ' can serve well in exam-
ining leverage of observations on fitted random effects of the model Nobre & Singer
(2011). The subjects with high leverage in respect of ZDZ" in Q, are expected

to have disproportionate weight on the estimate of the variance components of the
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model.

Now, using the conditional fitted value (2.45) for the linear mixed-effects model,

a generalized joint leverage matrix for subjects on overall fitted values is given by:

Q=Q;+Q,
B ay*l 85’*2
oyl oyt

=XX'¢'X)"'xX"G ' +zpz” (¢ - ¢T'X(XTGT'X) X6 ).

(2.48)

The diagonal of the quantity Q will measure overall influence of a subject on the

fitted value of the entire model (Nobre & Singer| 2011)).

Further transforms of the residual (2.8) are used to examine influence of a sub-
ject in the model. Examples include the Difference in Fit Standardised (DFFITS)
(Belsley et al., 2005) and Cook’s distance (C'D) (D. Cookl [1977). The DFFITS;
of subject i is a scaled measure that captures the change in the fitted value Y; for
the i-th subject computed after removing subject i from the data (Belsley et al.|

2005). The i-th subject DEFFITS; for Y; from the linear model (2.1) is given by:

Yi—Y
DFFITS; = Y= Y)

Wij
=)\ )
’ (1—wm‘>

The values of DFFITS; larger than 2 X y/p/n, in absolute sense, where p is the

(2.49)

number of parameters in the model, are considered influential on the fitted value Y;.

While the Cook’s distance C'D; for the i-th subject for the model (2.1) is the

change in parameter estimates B following removal of i-th data record (D. Cook|,
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1977), measured as sum of this change for all parameters in the model, given by:

By — BTX"X (B — B)

CD; = ~
bo¢
AT .
(XX ) Xaly = xF8)) XX (X X)) Xly - XT5))
N po?
X"X) Xily-XT A Ty (KX Xl X
1-xI'(xXTX)-1x; 1-xI'(xXTX)-1X;
B po?
2
B y—X/'3 XI(XTX)1X; (2.50)
T~Nry\—
66\/(1—XZT(XTX)—1XZ-> p(1=XT(XTX)"1X;)
B )\ivar(ﬁ)
— p var(&;)
N XIXTX) X
Cop 1-XT(XTX)-1x;
_ )\i Wi
Cop 1wy
where 62 = ﬁi_‘; is estimated variance of random error term, X;) is the n—1 x

p+1 design matrix without i-th row X of covariates, (X%’;)X(i))_l = (XTX)"1+

XTx)~1x; xI(xTx)~!
1-xI(xTx)-1x;

(D. Cook, 1977; Pregibon, (1981)). The term wy;; is i-th diag-
onal element of the leverage matrix for the linear model (2.1), and p is the number
of parameters in the model. The values of C'D; (2.50) that are greater than 1 are
usually considered large and their corresponding subjects become targets for influ-

ence on the regression parameter estimates (D. Cook, [1977; |Sarkar et al., [2011)).

A different approach to case-deletion for assessing influence of the data point
on the fitted value Y; is the squared norm of a vector of forecast changes, called
Pena’s Statistic (Penal 2005, [Turkan & Toktamis, 2012). It estimates how deletion
of each data record affects the forecast for a specific observation of interest (Ttrkan

& Toktamis, [2013)). For the general linear model (2.1), the Pena’s statistic, denoted
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a; is given by:

Lo o e
az——p&gHy Yl

APwii
1—w;;
M > i) (2.51)

€; Wi;

- p(}g(l — wii)Q

T, .. T x
wiiw”ei €Z~

- p62wi; (1 —wi)T(1—wy;)’

where ef = Y; — Y(i) is the displacement in ¢-th fitted value when the observa-
tion ¢ is deleted; wy;; is the leverage for subject ¢ from the model with reduced
data; 62 = é”é/(n—p) is unbiased estimate of variance of the error term; and

Ai2 = @[62(1 — w;;)] Y2 is the studentised displacement e (Tirkan & Toktamis,

2013).

The measure can also track a relative outlying tendency of each subject com-
pared to the rest (Turkan & Toktamis|, 2013). [Penal (2005) demonstrated that the
measure has asymptotic normal distribution, with capability to detect a group of
high leverage similar outliers, a feature that Cook’s statistic falls short of, also
observed by (Turkan & Toktamis, 2013). In addition, the measure was proven
to be handy in detecting model heterogeneity in large high-dimensional datasets
(Penay, 2005). The cutoff proposed by |Pena (2005|) for outlying observations is:
la; — median(a;)| > 4.5M AD(a;), where MAD(a;) = median||a; — median(a;)|],

i.e. Median of Absolute Deviations from sample median.
For the Cox univariate model (2.11), leverage of i-th subject for the covariate

X at time ¢; is a distance between the subject’s covariate value X; and its weighted

average X at time t;, given as a component in the score function (2.25):

Wiq :Xi—X(B,ti). (2.52)
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Large values of the leverage (2.52) indicate that a subject exerts considerable in-
fluence on the fitted hazard h(t;). The general influence assessment for regression
coefficients estimators B in Cox univariate model is done by the “deleted observa-
tions” method, a procedure involving computing B from complete data and then
ﬁ(i) from subset of the data following elimination of subject i (Nguyen & Rocke),
2002; Cleves et al.| 2010; |Wilsonl, 2013)).

Then, the influence of i-th subject on B is measured by the statistic called
Difference in Beta Standardised (D F Betas), also referred to as Delta— beta, which

captures the change in the value of the coefficient 3. The DF Betas is given by:

DFBetas; = =1 (2.53)

The large values of DF Betas; are indicative of influence of the subject 7 on the

estimate B .

The process for computing DFBetas (2.53) is however tedious, as it involves
re-fitting the model (2.11) to the data n+1 times. This is a major setback of
the method (2.53) (Nguyen & Rocke, [2002; Cleves et al., [2010; Wilson, 2013)). An
alternative and efficient measure, called Score residual is used for the univariate
Cox model (2.11) (Therneau et al., 1990; Wei & Su,, |1999)). This technique is based
on the fact that mean X of a covariate changes over time for the model (2.11), as
individuals leave the risk set. The leverage (2.52) therefore, takes the form that

integrates out the time-effect (Therneau et al. [1990; Wilson| 2013)), as

walB,t)= [ °°[X1< 1) = X (B,0)d5i(1)

) (2.54)
= [T1X(0) ~ Xl i),

where m;(.) is a martingale residual for the i-th subject. The transformed leverage

(2.54) is the Score residual. It measures the contribution of subject i in the risk
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set to the score function for the covariate X.

Since the score function estimates one parameter at a time and treats others
as constants, there is possibility of setting up a vector of score functions and hence
score residuals wii(ﬁ,t) = (wil(ﬁ,t), ...,wip(B,t))T (Nguyen & Rocke, 2002; Wilson,
2013). The estimation of DFbetas (2.52) using score residual (2.54) is thus done by
multiplying the inverse of variance-covariance matrix of the parameter estimates

I(8)~! with the vector of score residuals (Therneau et al.l [1990) as:

DFbetas; = (ﬂAZ —B(i))/se(ﬁ(i))
~ I(B)_l(wil(ﬁvt)v "'7wip(3at))T'

(2.55)

When the Cox model is correct, plots of score residual (2.55) against values of the
covariate X; will fluctuate around zero and any systematic deviations will suggest
lack-of-fit for the independent variable X. This will at the same time spot influence
of subjects on the parameter estimate (Therneau et al., [1990). Figure 2.6 is the
DFBetas plots for the variables age and prio in the Cox recidivism model (2.13).
It shows that most subjects did not have influence on both age and prio variables,
since the DFBetas plots concentrated around the zero line. Although few subjects
had their points away from the zero line, their values were very small, indicating

negligible influence on regression coefficients.
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Figure 2.6: Index plots of DFbetas on age and prio for Cox regression for re-arrest
data. Source: (Fox, 2002)

Alternative influence technique for the Cox model was studied by |Cain & Lange
(1984). They engaged concepts of influence curve from Samuels| (1978) and Hampel
(1974) to develop an approximation to change in parameter estimate B — B(i) using
first-order Taylor series expansion, by taking the estimator B as a function of
individual weight w;, i.e. 3 (w;i). Hence, an approximation to B— B(i) following

removal of i-th subject in the model is given by:

A

B— By~ 0B/0w; = (—0Us/0B) ' 0Us/ 0w, (2.56)

where Up is the score vector of the model, and w; the subject’s weight taking values
of 1 for all subjects in the model and 0 for the removed subject. The influence of
a subject is assessed graphically, by plotting the measure against ranked survival

time (Cain & Lange, [1984)).
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The work reviewed in this section has shown that methods on subjects’ influence
for linear, linear mixed, and univariate Cox models are based on studying leverage
and outlier statistics of the subjects. Then, influence statistics are constructed as
a product of the two quantities. For example, the DFFITS and Cook’s distance for
linear models are products of leverage statistics and studentized residuals, while
DFBetas for univariate Cox survival model is a product of leverage and inverse
covariance matrix of parameter estimates. The current work has exploited such
approaches in the clustered survival model to develop group influence measure for

this model.

2.5.1 Influence diagnostics in mixed-effects models

For the linear mixed-effects model (2.2), cluster-deletion diagnostics are derived
from partitioned regression matrices and vectors by clusters. Once a cluster is
removed from the data, the updated parameter estimators are solved from the
data that remain (Xiang et al., 2002; Zewotir, 2008)). These help in computing
measures for estimating contribution of the dropped cluster to the model. To
illustrate these partitions, the linear mixed-effects model (2.2) is re-specified in

stacked form as below, where the horizontal dotted lines indicate the demarcations
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between clusters:

Yi 1 X X112 o X Bo 1 Zin Zu2 - Zug b11 €11
Yo1 1 Xonn Xo12 - Xoyp b1 1 Zon Zo12 v Zag ba1 €21
Yo 1 Xon Xog12 Xni1p Bp 1 Zpun Znga2 Zni1ql bg1 €ny1
Y12 1 X X2 - Xiyp Bo 1 Zin Zioa - Zisge b12 €12
Yoo 1 Xoo Xogo -+ Xogy b1 1 Zon Zozz o Zoog2 ba2 €22
= + +
Y;LQQ 1 Xn221 Xn222 Xn22p /jp 1 an?l Zn222 Zn,22q2 qu €ng2
Yiu 1 X Xz - Xiwup Bo 1 Zwwn Zwmz o ZiMgM b1 €1M
Your 1 Xoan  Xonm2 - Xowmp B 1 Zomn  Zom2 -+ ZoygM bant €20
Yo T Xopmr Xognrz o Xogmp| | Bp U Znymt Zoym2 - ZpyMam | |bgut €narM
(2.57)

where j =1,2,...,M clusters; ¢ = 1,2,...,n; subjects in cluster j; p is the number
of fixed covariates, with 8 = (Bof1...8p)] the vector of fixed parameters; g; is the
number of covariates with random effects, with by, = (b1jbaj...bgj)T is vector of
random effects; Y; is the response value for subject 7 in cluster j; Xj; is the value
of observed fixed covariate for subject 7 in cluster j; Z;; is the observed value of co-
variate with random effect for subject 7 in cluster j; and ¢;; is the unknown error for
subject 7 in cluster j. The probability distributions for the error term, ¢ and ran-

dom effect b as well as all other model assumptions are as provided in model (2.2).

The partitioned matrices and vectors in model (2.57) can also be expressed
as: y = (le,sz,...,y%)T, Le. m; x 1 component vectors N corresponding to the
j-th cluster; X = (XT,XT,...,XSI)T7 i.e. mjxp component matrices X;, and
7= (ZT,ZT, ...,ZZI)T, nj X ¢ component matrices Z; (Xiang et al., |2002; Zewotir,
2008). If cluster j is removed from the dataset, the entire design matrix X can
T )T

be re-written as a set of two design matrices, that is, X = (X?,X(j) compris-
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ing design matrix X%;) without j-th cluster, and design matrix X; for covariates
data in cluster j. The same applies to all other relevant matrices and vectors, for
example € = (é?,é%;))T (Xiang et al., 2002). From the partitioned matrices, such
as X = (X?,X%;-))T, one can note that the log-likelihood function l(j)(B(j)) for
for the model on reduced sample is the function of both full data and the data
for dropped cluster j. For illustration, one can think of the log-likelihood function
l(j)(B) as the difference of the log-likelihood functions from the full data and the

data from cluster j, i.e. l(;)(8) =1(B) —1;(B). This means that the log-likelihood

L) for ;) can provide an estimate of impact of the dropped cluster j in the model.

A number of techniques exist for estimating the parameter displacement B— B(j)
when cluster j is removed from analysis. One method that is used is the first-order
Taylor series expansion of the score function of conditional log-likelihood function
for reduced data U 8o

by solving for B(j) in the first-order Taylor series expansion of the score function

() evaluated at 3. The updated estimator B(j) is obtained

when it is equated to zero, see (Pregibon| 1981} Xiang et al., [2002). A first-order
Taylor- series expansion of any univariate function f(X) around a point X = «
is a linear approximation of the value of the polynomial f(X) or its gradient
at point a, given by: f(X) = f(a)+ din(oz)(X — ). Since gradient of a curve
f(X) around a point « is an instantaneous change of the curve with respect of
the variable X, the first-order Taylor series expansion concept is applied on the
score function from the conditional log-likelihood function I(;)( B(j)) to estimate the
updated formula of the regression parameter resulting from removing a subject or
cluster of subjects. The conditional log-likelihood function l(j)(B(j)) for reduced

data for linear mixed-effects model (2.2) is given by:

n—nj

L) Biply ), Xy o) = =
(2.58)

Then, the first-order Taylor series expansion of the score function obtained

o4
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from the conditional log-likelihood function (2.58), evaluated at 3 and treating

as nuisance parameter (Xiang et al., 2002), is given by:

G(j
B Py
U, B = 8@ +8AT(Jc?9A (5= 5)
Buy  98(;980) (2.59)
= X{() GG i) = X)) = XG5 Xy (B = Biy))-

Therefore, the updated parameter estimator B(j) is approximated by equating the

equation (2.59) to zero and solve for B(j) as follows:

T —1 A A T —1 A
XHG5H X (B=8u)) =X(3HG; Vi) — X7 Bu))

A A T —1 —1~T —1
B=By = XHGH X)) X G Vo) — X))

o T —1 —1~T —
=0=X(HGp X)) X(;)G

Once the updating formulae are solved, the influence measures for clusters are
developed from the usual quantities for examining influence defined in previous
section, such as Cook’s distance, DFBetas, and DFFits (Xiang et al., 2002; Zewotir),
2008). For example, the generalised Cook’s distance for B for data without j-th
cluster in linear mixed-effects model (Xiang et al., 2002; Zewotir, 2008)) can be

estimated as:

(B— BT (XF, ficms @) (B=B)

CD;(B) = pro
T =1y \-1xT —la N T ~-1 T =1y \-1xT 14
(XG5 X0) " XG,Gge0) (XG5 Xe) (X666 X0) ' X)) Gjenm)
po?
AT -1 T -1 — T —1 T -1 — T —1a
_ &5 Gp X0 X)) Gy Xu) (X G X)X G X)X () G )8
P2
A -1 T 1T lA
_ )G pHXu >(X<>G<J>X<>) X()G»)ew
pae
AT ~—1 .
_ )Gy Qs
po?
(2.61)
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where Qq(;) = X(j)(Xa)G(}%X(j))*lX%})Ga is leverage matrix for fixed effects
solved in equation (2.46) but without cluster j. Large values of C'D; (B) in equa-
tion (2.61) show that subjects in cluster j are jointly influential on B (Zewotir,

2008).

A similar approach can be used to find the updating formulae for the other
model parameter estimators, such as estimated variance of the error term 2. The
same results can also be found using direct application of properties of multivariate
normal distribution on reduced data (Zewotir & Galpin, 2007). As for the random
effects b, the linear mixed-effects model (2.2) assumes that these are mutually
independent across clusters, hence deleting one cluster will not affect the estimator
b for the remaining clusters (Xiang et al., 2002). This is demonstrated below,
using the method of first-order Taylor-series expansion on score function obtained
from the complete joint log-likelihood function (2.19). The first-order Taylor-series
expansion of score function for B(j) resulting from the conditional log-likelihood

l(j)(f)(j)) for reduced data, evaluated at b, is given by:

U, () = 20D Th®) g
. J " J
. 7bG) ab<>3b(>

T 2 —1 A 2 —1 -1
Izuﬂ%uﬂoﬂ o) =X Bi) — [oﬂ%uﬂuﬂ Z;)+ D) by

(2.62)

Therefore, the updated formula B(j) for b will be found by equating the quan-
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tity (2.62) to zero and solving for b(;y as follows:

(J

T B .
=Z (021" ) — X )

2 A T 2 —1 -1 T 2 —1 A
b(j)+(b_b(j)): [Z(J’)(Ue(j)l(j)) Z(j)_'_D(j)} Z(j)(ae(j)I(j)) (Y(j)—X(j)ﬁ(j))

. _ T —1 A
2 b =D Z(H G (v — X ) By))

(2.63)

This result shows that the updated formula f)(j) for b, upon dropping cluster
7, is just the same formula b obtained when using all available clusters. This
implies that there is no change in the estimator for random effects when a cluster
is dropped from analysis. This means that the prediction of random effects b for
each of the available clusters is insensitive to any other cluster that might have
been dropped from the dataset. Such is the case due to independence of the ran-

dom effects across clusters (Xiang et al., [2002)).

A version of Pena’s statistic for influence of individual subjects on the linear
mixed-effects model (2.2) follows naturally from the definition (2.51) (Turkan &

Toktamis, 2012). The Pena’s measure for linear mixed-effects model (2.2) is thus

given by:
1 a2
a; = ———|ly — v
) (p+q)5_62||y Y(z)H
:)\2{2(1—7%)
(p+q)(rii)
2.64
_ 6?2(1—7“1‘1‘) ( )
(p+q)o2(rii)?
(1 —rii)e; e}

(p+q)odri(1—rii)’

where 1 —7;; is i-th subject leverage defined in equation (2.22); €7 =r;;Y; is i-th sub-

ject’s displacement of Y; due to removal of subject i from analysis; A} = € /G¢\/Tii

a7

T 2 —1 -1 T 2 —1 —1 " A
(205021 5) " 2y + D) by + |20 (025 1) " 2y + D) | (b—by;



is the Studentised displacement. Large values of the measure (2.64) will show
subjects that have influence on the fitted value. By revisiting various cutoffs, the
reliability of Pena’s residual in tracking outliers is also reported in the work of Das
& Gogoil (2015). The implementation packages for group or individual subjects
influence methods for linear mixed-effects model are available in literature. For
example, Schabenberger| (2005) uses the SAS program MIXED to compute the mul-
tivariate DF'FITS statistic corresponding to removal of a group of observations
from the model. While |Loy & Hofmann (2014) use the R package HLMdiag to

implement the diagnostics.

Throughout this review, it is clear that the residuals for the linear mixed-
effects model (2.2) are direct extensions of those for generalised linear model (2.1).
This reflects the relationship of the structures and estimation procedures for both
models. The review also shows that influence and outlier assessment methods for
linear and linear mixed-effects model are well-studied. There is just little work
done on diagnostics for non-linear mixed models. In the next section, the current

application of model diagnostics in clustered survival data is reviewed.

2.6 Application to clustered survival data in Malawi

Standard outlier and influence statistics for survival data were implemented on
child survival, a major indicator of health and development of a country, collected
as part of 2015-16 Malawi Demographic and Health Survey (MDHS) data. Malawi
is a landlocked country in south-eastern Africa in the Great Rift Valley and lies
on the western shores of Lake Malawi. The country is bordering Tanzania to the
north, Zambia to the west, and Mozambique to the east, south, and west. The
population of Malawi was just over 17 million in 2018, representing intercensal
growth rate of 2.9% per annum between the previous housing and population cen-

sus of 2008 and the recent one of 2018 (Malawi National Statistical Office (NSO)|,
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2019). Using this estimated growth rate, the population is expected to double by
2042. Over 80% of the Malawi’s population is rural, and with 64% under the age

of 15 years, thus the country has a young population.

Administratively, Malawi is divided into the Northern, Central and Southern
regions, which are further divided into twenty-eight districts, namely: Balaka,
Blantyre, Chikwawa, Chiradzulu, Machinga, Mangochi, Mulanje, Mwanza, Neno,
Nsanje, Phalombe, Thyolo, and Zomba in the Southern region; Dedza, Dowa, Ka-
sungu, Nkhotakota, Ntcheu, Ntchisi, Lilongwe, Mchinji, and Salima in the Central
region; and Chitipa, Karonga, Likoma, Mzimba, Nkhatabay, and Rumphi in the
Northern region. Four of the districts, namely: Blantyre, Lilongwe, Mzimba, and
Zomba contain the four major cities, which themselves are further divided into ru-
ral and city locations. Figure A.1 in the Appendix shows the map of Malawi with
the 28 districts and the four cities. The economy of Malawi is largely dependent
on agriculture, fishing and forestry and the country’s GDP is one of the lowest in
sub-Saharan Africa. The very low GDP places pressure on the delivery of health
care system, which is based on primary health care (PHC), largely operated within

the 28 districts and 4 cities (Makaula et al., 2019).

The 2015-16 MDHS survey, which was the fifth since 1992, aimed to provide
data for monitoring the population and health status of the country. The survey
was held from 19 October 2015 to 18 February 2016 and collected child survival
data from the women respondents and caregivers who provided birth histories. For
the purpose of this work, mortality data on 17,286 children, who were born within
the last 5 years of the survey, were analysed. The survey employed a two-stage
stratified sampling design, with emuneration areas as primarily sampling units and
households as secondary sampling units, having all women aged 15-49 years being
eligible to participate in the survey. Further information on the 2015-16 MDHS

can be found in the survey report (Malawi National Statistical Office (NSO) &
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[CF}, |2017)), and the information about the DHS progam and data access are avail-

able at www.DHSprogram. com.

In order to balance between sufficient clusters and number of children per
cluster, the rural and urban areas in each district were taken as separate groupings
or clusters. Thus, we used the resulting 52 subdistricts (clusters) on which to
analyze the child survival data from the 2015-16 MDHS. Child birth order and sex
were used in the analysis of child survival because previous studies had indicated
that these are some of the well-known predictors of child survival (Manda, [2001)).
The survival model was fitted to the dataset and cluster outlier or influence was

assessed for each sub-district using available methods.

2.6.1 Using random effects residuals from frailty model

One of the statistics that are used for group outlier examination for clustered data
is the random effect residual discussed in Section 2.4.1. A Cox frailty model was
fitted to the 2015-16 MDHS data, with event of interest being death of a child from
any cause before 60 months of age. The event-time was age in months as at death
or censoring point. The ages-at-death that were recorded as zero months were
transformed into random Uniform(0,1) values to reflect proportions of month-
days lived before death or censoring by the corresponding children. The data had
about 5% children who experienced the event of death. Administrative censoring
was used, and children who were still alive or had survived up to 60 months were
censored. The covariates were birth order and sex of the child. The fitted model
was as follows:

hij(age) = ho(age)exp(—0.185 x Female —0.214 x Birthorder (2.65)
2.65

+0.0233 x Birthordersgared + subdistrict).

The model results showed that female children had significantly lower risk of

death than the male children (p-value < 0.0096). While higher birth order was
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associated with reduced risk of death (p-value < 0.0001) and birth order squared
with increased risk. The relationship between birth order and logarithm of hazard
of death was therefore quadratic. The results are consistent with previous findings
(Mandal, 1999). The variance of sub-district random-effects was 0.0419 and it was
significantly different from zero (p-value < 0.001). The scatter plots in Figure
2.7 for estimates of random effects showed that Neno urban was an outlier to
the survival mixed model based on random effects estimates. These results were

reserved for comparison when applying the derived group outlier statistic to the

same data.
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Figure 2.7: Sub-district level random effect residual from fitting a frailty Cox
hazard regression model to Malawi child survival data, 2015-16 MDHS. Source:
Researcher

2.6.2 Using group summary statistics of residuals from

univariate Cox model

The other method for examining group outlier and influence for clustered survival
data involves fitting a univariate Cox model (2.8) to the data and compute group
summary statistics of the residuals such as deviance and DFBetas (Jennings| [1986;
Langford & Lewis, 1998} [Duchateau & Janssen| [2005; Legrand et al., 2006]). The

univariate Cox model was fitted to the 2015-16 MDHS data using the same event
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of interest and covariates as in previous section. The fitted model was:

hi;j(age) = ho(age)exp(—0.182 x Female —0.212 x Birthorder
(2.66)

+0.0234 x Birthordersguared)-

As with frailty model (2.65), effects of female gender (p —value = 0.011), birth
order (p—wvalue < 0.0001), and birth order squared (p —value < 0.0001) on child
risk to death were also significant. The only difference was that the sizes of the
fixed effects were slightly larger in the univariate Cox PH model comapred to the
multivariate Cox PH model. The subdistrict unweighted averages of the model’s
deviance residual and DFBetas were computed. The results in Figure 2.8 (a) show
that Chikwawa rural and Balaka urban were under-five mortality outliers based on
a cutoff of 2.5 for the cluster average deviance residual from the univariate survival
model. While, the average DFBetas in Figure 2.8 (b) indicate that Chikwawa
urban and Balaka rural were marginally influential on the effect of female gender
on child survival. The results were also reserved for comparison when applying,
on the same dataset, the proposed group outlier and influence statistics developed

in this study.
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(a) Cluster-wise average deviance residuals from (b) Cluster-wise average DFBetas for influence
fitting a univariate Cox hazard regression model of female effect on log hazard in univariate Cox
to Malawi child survival data, 2015-16 MDHS. model applied on 2015-16 MDHS.

Figure 2.8: Plots of average deviance and dfbetas residuals per cluster upon fitting
a univariate Cox model to 2015-16 MDHS. Source: Researcher
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Chapter 3

Cluster Outliers for Survival

Mixed Model

This chapter presents a method for detecting outlying clusters in grouped survival
data. The chapter begins by defining the important statistics for group outlier

analysis and later presents the suggested measure.

3.1 Useful definitions for studying group outliers

The review in Chapter 2 revealed that the outlier concept is to do with subject(s)
not conforming to the distributional assumption of the fitted model (Langford &
Lewis, [1998; [Sarkar et al., 2011} |Aguinis et al., |2013; |Z. Zhang, 2016|). This is
now examined using post-estimation statistics that can capture the distribution of
the model’s fitted value or residual. One such statistic that is used in generalised

linear models is the residual € in equation (2.8) given by:

e=y—y
=y - XX"X)" X"y (3.1)
= (In - W)y7
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where W = X(X?X)~'X” is the hat matrix, or its scaled version in equation

(2.10) given by:

A= [var(e)]"'/%e

[(1—Wii)Tvar(y)(l—Wii)rlﬂé (3.2)

=6 (1 —wy) %,

where w;; is a vector consisting of diagonal elements of W (Loy & Hofmann, [2014)).

The primary purpose of the residual (3.1) is to assess linearity and additivity
assumptions of the general linear model (2.1) (Yang, 2012). However, it is also
used to assess outliers due to the fact that it is an estimate of the model’s error
term, whose probability distribution is assumed to be normal with mean zero
and constant variance. So, subjects that are in the periphery of the scatter plot
of estimated errors é; against individual indexes i are considered outliers to the
model. In linear mixed-effects model (2.2), the residual & given in equation (2.23)
is:

é=y—XG—Zb. (3.3)

This residual also serves to examine linearity and additivity assumptions of
the linear mixed-effects model (2.2) as in generalised linear model (2.1) (Nobre &
Singer}, [2011; [Turkan & Toktamis|, 2012} Loy & Hofmann, 2014). For the univariate

Cox PH model (2.11), a residual is defined as in equation (2.12):

m(t) = N(t)~ [ Vilt)erp(XE (0)3)dHo ), (3.4)

where N(t;) is a counting process for the i-th subject indicating number of ob-
served events experienced over time t;, Y;(t) is a 0-1 process indicating whether
the i-th subject is at risk at time ¢; and the Cox model restricts that Y;(t) =1
until the first event or censoring and 0 thereafter, B regression coefficients, XiT (t)

p-dimensional covariate processes, and ﬁo(t) the baseline cumulative hazard func-
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tion that is unspecified (Therneau et al., 1990).

The residual is called martingale because of its relation with a counting process.
It is interpreted as the difference over [0,¢;] in the observed and expected number of
events at each time t; given the model, or as excess events (Therneau et al., 1990)).
Thus, positive values imply individuals failed earlier than expected and negative
values means they survived longer than estimated. Just as in linear models, the
residual (3.4) has also the properties of summing to zero, having an average of
zero and with no correlation between any two of its values at any given time
point (Therneau et al., [1990). For this reason, the residual (3.4) is also used to
assess the linearity and additivity assumptions in survival models. When plotted
against each covariate X, the values are expected to average around zero where a
covariate has correct linear specification. Once consideration is on the Cox model

with time-independent covariates, the martingale residual (3.4) reduces to:

m(t;) = 6; — Hy(t)exp(XI B), (3.5)

where ¢; is the final status of subject i and ¢; the observation time for subject 1.

The natural extension of martingale residual (3.5) to clustered survival model

(1.1) is defined as:
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m(tij) = 6ij — Ho(t)exp(Xg;B + Zgi)])

m(tn) 511 —ﬁo(t)exp(XlTlﬁ+Z1T181)

m<tn11) 517,11_ﬁo(t)exp(Xgllﬁ+Zgllgl)

m(tlg) 019 —Ho(t)exp(XlTQB-f-Zgi)g)

(3.6)

: = A A A~

m<tn22) 517,22 _Ho(t)exp(X%;Q/B—{_ZgL;sz)

m(tia) d1n — Ho(t)exp(XTy B+ ZE1bar)

)| | Onghs — Hy(t)exp(XT 1B+ Z;{MMBM)_

The properties of the residual (3.5) may not apply to the extended version (3.6)
due to correlation of subjects resulting from shared random effect in a cluster.
In both univariate and multivariate cases, the martingale residual is negatively-
skewed because §; has values 0 or 1 while Ho(t)exp(X} 3) has values in the interval
[0,00). Due to this skewed distribution, the martingale statistics (3.5) and (3.6)

may not ably serve to examine outliers.

The review in Section 2.4 showed that apart from Studentised residual (3.2), a
deviance residual is also used for outlier assessments in generalised linear models.
As indicated in the stated section, the deviance residual measures the disagreement
between an element of the log-likelihood of the fitted model and the corresponding
element of the log-likelihood that would result if each point were fitted exactly
(Sarkar et al., 2011). For example, a deviance statistic for logistic regression

presented as equation (2.35) is given by:

di = sign(Y; —0(X,)) [~2(Yilogh(X;)) + (1= Yi)log(1 - 6(X,)))| 2 (3.7)
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i(X) = _cxp(XTh) " s : _
where 0(X;) = teap(XT5) is the fitted conditional probability of success given co
variate X, Y; is binary response taking values 0 or 1, and ‘sign’ the sign of raw
residual ¥; —0(X;), plus or minus. The deviance residual (3.7) is expected to be

symmetric around the mean zero, hence marginal points in its distribution are

regarded as outliers.

A similar version of deviance residual was suggested by Therneau et al.| (1990)
for Cox PH model, it is a transformation of a martingale residual given in equation

(2.36) as:

d; = sgn(m(t;)) [—2(m(t;) + 0;log(d; — m(tz))]% : (3.8)

From this version of the deviance residual, an extension for the clustered survival

model (1.1) is defined in stacked vector form as:

S

dij = sgn(m(tiy)) [=2(m(tij) +di;log (83 — m(t;))]

_ di1 || sgn(m(t11))[=2(m(t11) + 611log(d11 —m(t11)))]/? _
dny1 sgn(m(tn,1))[=2(m(tn,1) +6ny1l0g(6ny1 — m(tml)))]UQ
di2 sgn(m(t12))[—2(m(t12) + 12log(d12 — m(t12)))] Y/
= =
dny2 SgN (M (tny2))[—2(m(tng2) + 0ny2109(Sny2 — M(tny2)))]
di sgn(m(tinr))[=2(m(tiar) + S1arlog(S1ar — m(tiar)))] Y2
_anM_ _Sgn(m(tnMM)) [_2(m<tnMM) + 6nMMlog(6nMM - m(tnMM)))]l/Q

(3.9)
Once again, the deviance residual (3.9) does not have same properties as its
counterpart (3.8) for univariate Cox model because subjects in a cluster are cor-

related. Hence, assessment of individual outliers within a cluster for the mixed
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survival model is not a straightforward task. However, the values of the residual
(3.9) are uncorrelated across clusters. The concern of this work was on group out-
lier analysis. By utilising the independence of values of the measure (3.9) across
clusters, a statistic for assessing group outliers in multivariate Cox model (1.1) is

developed and presented in the next section.

3.2 Proposed outlier statistic for multivariate sur-
vival data

There are a number of techniques that are used to assess group outliers in mixed
models. One way is through graphically assessing the homogeneity of the distribu-
tion of standardised residuals of single observations in a linear mixed-effects model

plotted against each cluster (Langford & Lewis, 1998), given by:
A\ij = €/stdev(e), (3.10)

where stdev(e) is Studentized residual of a subject. The clusters with highly
skewed Studentized residuals compared to others, are considered outliers to the

linear mixed model (Langford & Lewis, [1998)).

A similar method is the re-weighted minimum covariance determinant (RMCD)

(Cerioli 2010), given by:

di parepy = (Yi = irmen) " Sigaen) Vi = irycen)) (3.11)

where [iraprop) = % YicYaop WiYi is re-weighted MCD estimate of location; > =

k; m,n,v ~ A~ . .
HRMEDN) 5 S ieviep @i(Yi — Rraepy) T (Yi— firaiep)) is re-weighted MCD

estimate of scatter; m =3 w;; v dimension of covariance matrix Y'; and

1€YneD
k(RMCD)(mn,w) Proportionality constant to control for bias. This method tests

whether or not a group of subjects belongs to a subsample of homogeneous units
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with constant variability, referred to as 'good’ observations. The null hypothesis
is Ho; : Y ~ N(u,X) and deIQ%MCD) is test statistic. When Hy; is not rejected, it
means the subsample Y; is a ‘good’ observation, otherwise the group of subjects

being assessed is deemed outlier (Cerioli, [2010).

The overalaps of scatter plots of residuals from different clusters is a major
setback for application of method (3.10), as one may not reliably conclude on out-
lierness of a cluster when plots of its standardised residuals overlap with those of
another cluster. Similarly, application of method (3.11) on regrouped subsamples
of data of size greater than half of the total sample size implies that the technique
ignores natural groups in the data, some of which may have lower sample sizes
than half of the total sample. Outlier detection methods that can be applied on
clusters of data are crucial in studying how behaviours of subjects in the clus-
ters affect the modelling. Nonetheless, both methods (3.10) and (3.11) transform
some known single observations residuals into distance quantity that can examine
grouped outliers to the mixed-effects model. Schall & Dunne, (1988)) demonstrated
that when a linear model is fitted to any residual € that is normally distributed,
the model’s diagnostic assessments can reveal outliers to the main model with
response y. The deviance residual (3.9) is one of the diagnostic statistic that is
symmetric about zero and has asymptotic mean of zero (Therneau et all [1990),
so this study suggests an outlier statistic for model (1.1) by manipulating further

the extended deviance residual (3.9).

Following from the ideas developed for linear mixed-effects models, this study
proposes a statistic computed from a ratio of within-cluster variance of deviance
residual (3.9) to between-cluster variance for examining outlying clusters to model
(1.1). If observations in model (1.1) were independent, the total variation of dj;
would have been the sum of within-cluster variation and between-cluster variation

given by:
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Zij\il 2?1:1 (dij — Ci)z _ fo\il Z;lel (dij - JZ)Q + sz\il nz(CZZ - j>2 (3 12)
n—1 n—M M—1 | |

M . .
Zi:l E?Q dij Z?Q dij
- —

(2

where d = is the grand mean of the deviance residual d;;; d; =
is the mean of d;; for any fixed i; n = ny +mng + ...+ nys is number of subjects in

entire dataset.

However, the correlations of observations in model (1.1) will yield biased esti-
mate of within-cluster variance of d;; in equation (3.12) for entire dataset. Since
the clusters are independent and assuming conditional independence of observa-
tions in each cluster, the respective within-cluster variances of residual d;; will be
unbiased estimators of variance of d;; in each cluster. These will consequently mea-
sure how distant the survival times of subjects in each cluster are from the fitted
survival curve. Therefore, the proposed group outlier statistic for model (1.1) is
an M x 1 vector, denoted k;, which is the ratio of within-cluster to between-cluster

variances of d;; given by:

1
k=—(ky,....ky)"

L
7 - T 3.13
(S Ay —d)? S (dary — dar)? (3.13)
L ni—1 T na — 1 )
M T 7\2
where L = Zj:l;;# is between-cluster variance of d;;.

Since the fitted survival curve is expected to pass through all available clusters
of observations, the proposed statistic (3.13) will separate homogeneous clusters
from the outlying clusters in view of the fitted survival mixed model (Rousseeuw
& Hubert, [2011)). The small values of k; will correspond to well-fitted clusters of
observations, that is, those units that closely span the fitted survival curve. While

large values of (3.13) will correspond to clusters whose observations have been
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poorly fitted by model (1.1), and hence outliers.

We explored properties of k; = f(K;,L) = K;/L, where Kj is the within-cluster
variance component of (3.13). Clearly, k; € [0,00) and it is a non-linear function,
since K; and L, being variances, have support [0,00). A common method to
estimate expected value of ratio estimator is through second order Taylor series

expansion about = (Mkj7 1) (Van Kempen & Van Vliet} 2000). Thus,

E(kj) = E(K;/L)
= E(f(Kj, L))
~ B0+ foy 00) kg — k) 5 ) 0= )+ 5 e ) s — g, )
2 g, (12) (k= iy ) (L= )+ F ) (1= )}
= 700+ 5 L () Var(Ky) + 25 (mCov( LK) + f )V ar (1)}
L oui, L)+ M var(L),

TR 1
(3.14)

where f(1) = iy /1, Frp (1) = 0, fup, (1) = =1/ ()%, and fy (1) = 24,/ (m)?,
since f(Kj,L)= Kj/L and E(K;/L)= E(f(Kj;,L)). Also, E(kj—ux;) = E(l —
) = 0; Var(K;) = E(kj — uy;)?, and Cov(Kj, L) = E[(kj — pg;)(I — u)].  For
variance of kj, it follows from the equation of mean above and from first order

Taylor series expansion of f(Kj, L) around p = (u,, ) that

Var(kj)=Var(K;/L)
= Var(f(Kj, L))
= B{[f(Kj.L) = f()]*}
~ E{[f(u)  Fiey (1) Ok — pa)) + F () (1= ) — f(u)]Q}
= fe(w)Var(K;) +2fy, (1) fy (1) Cov (K, L) + fi*()Var(L)

2

1 ; M,
= —Var(Kj) - QM—?C’OU(KJ-,L) + —ZJV&T(L).
] Hi K

(3.15)
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These properties and others such as estimates of third and fourth moments
of k; can help in characterising the distribution of k;, which can in turn pro-
vide a basis for formal tests about outliers to model (1.1). Nonetheless, graphical
methods also provide reliable alternative to formal tests of model residuals (Yang,
2012). Searching for a fixed critical point for determining an outlier using a resid-
ual becomes relevant when there are few isolated cases in the dataset (Zewotir &
Galpinl 2007). Where the data has many outlying cases, use of multiple compar-
isons of the residual values relative to one another, and through graphical displays,
is recommended (Zewotir & Galpin, 2007)). The graphical methods are known to
provide reliable alternative to formal tests of model residuals (Yang, 2012). For
these reasons, this study engaged graphical assessments were engaged in this study
to analyse outlying clusters to model (1.1). In practice, relative comparisons of
values of a group outlier statistic suffice to isolate outlying groups to mixed mod-
els (Zewotir & Galpin, 2007). Hence, this study applied graphical techniques on
values of the proposed outlier statistic k to assess the outlying clusters in relevant

datasets.

3.3 Simulation study

In order to evaluate performance of the proposed outlier statistic, a simulation
study was carried out. There are many examples in literature for survival-times
data simulation techniques (Bender et al.l [2005; [M. J. Crowther & Lambert, 2012,
2013; |Cho et al.l |2009; Morina & Navarro| 2014} Montez-Rath et al., 2017; 'Wan,
2017; Brilleman et al| 2018)). A shared frailty survival model was assumed in
order to generate survival times T. Two covariates were used, X generated from
Bernoulli(0.7) and Xo from N(0,1). The cluster random effects b were generated
from N(0,0.42). The survival time data T were generated from the Exponential(1)
distribution, using the cumulative hazard inversion method (Brilleman et al.| 2018)

on the model:
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hij(t]bj, Xi) = ho(t)exp(B1Xij1 + P2Xijo + b)) (3.16)

where ho(t) ~ Weibull(0.1,1), i.e. ho(t) = act®"!, with a = 0.1 and ¢ = 1 making
ho(t) = 0.1 a constant; 51 = 0.5 and S = 1. The inversion method derived ¢;;
from #j; = Higl(—log(S(tij))), where S(t;;) ~ Uniform(0,1) and hence making

H;i(t) = —log(Uniform(0,1)) ~ Exponential(1) (Brilleman et al., 2018]).

The random censoring variable A was generated from Bernoulli(0.4), giving a
censoring rate of 60%. This rate was chosen because few cluster surveys of vari-
ous populations in Africa have reported an average failure rate of 40%, when the
event-time is death (Manda & Meyer, 2005). Other methods for generating cen-
soring variable are available in literature (Montez-Rath et al.; 2017; Wan) 2017)).
For instance, administrative censoring, where the study end point is defined and a
censoring variable is created that gets a value of 0 for subjects’ survival times that
cannot be observed beyond that end point and 1 for those that can be observed.
Another example is the traditional censoring where two sets of event-times data
are generated in parallel; survival times and censoring times and the minimum of
the two is picked for study, and the censoring variable gets a 1 if this minimum

is from survival time and 0 when it is from censoring times (Montez-Rath et al.|

2017; Wan, [2017).

The R package simsurv (Morina & Navarro, 2014; Brilleman et al., [2018) was
used to set up and draw the clustered survival data from the exponential distribu-
tion. Samples of size 10, 20, and 50 clusters each, having 80 and 500 subjects per
cluster were generated. Each case was replicated 100 and 1000 times. This tested
effect of cluster and simulation sizes on performance of the proposed method. A
common approach that is used to evaluate performance of newly proposed diag-
nostic measure is to simulate regular data set based on the model of interest and

introduce various scenarios of aberrant cases so as to check if the diagnostic statis-
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tic can detect these (Zewotir & Galpin| |2006). In that regard, two clusters in each
of the three cases were perturbed so as to have different survival-times. At first,
the survival times of the first two clusters were generated from a model (3.16) with
perturbed random-effects parameter values as by o ~ N(10,2.5%), N(15,5.52), while
the parameters of X; and Xy remained intact. This generated random effects in
clusters 1 and 2 that were outside the 95% confidence range of the expected average
value of zero, i.e. [—0.784,0.784], which was expected to generate survival times T’
in cluster 1 or 2 with some degree of outlying. That was done on assumption that
values of random effects will contribute to outlying behaviour of survival times

variable T in a cluster.

Secondly, the survival times in the first two clusters were generated from a
model with (81 =1.8,2.7), leaving the other parameters fixed as in model (3.16).
This assessed how (31 influenced outlying tendency of survival times in the first two
clusters. Thirdly, data of the first two clusters were generated with (53 = 2.0,2.5),
leaving the rest of the parameters fixed. In all other clusters than 1 and 2, data
were generated using parameter values defined along with model (3.16) without
any adjustment to ensure that the outlier measure should only detect cluster 1 or

2 as outlying when applied on the dataset involving all clusters.

Nonetheless, a cluster can have outlying effects on survival times T' due to an
interplay of values of fixed- (81, 32) and random-effects b parameters (Zewotir &
Galpin), 2006). Hence, joint perturbations of fixed- or random-effects were also
performed, i.e. f1 =1.8,2.7 and by 2 ~ N(10,2.5%), N(15,5.5%), leaving S intact.
Then, B2 =2.0,2.5 and by 2
simN (10,2.5%),b1 2, N(15,5.52), leaving 1 unchanged, likewise 81 = 1.8,2.7 and
B2 =2.0,2.5, leaving random-effects b; intact. Finally, data were generated with all

the three effects perturbed, i.e. 81 =1.8,2.7, 2 =2.0,2.5 and by 2N (10,2.5%), N(15,5.5%).

74



A decision about the effectiveness of the proposed method in identifying clus-
ter 1 or 2 as outlier was made using proportion, among simulations, of cor-
rect identification of the outlying clusters 1 and 2 by the proposed outlier mea-
sure (3.13) at a given cutoff (Xiang et al) [2002). The cutoff used is ki2 >
mean [maximum(k; :i=3,4,...,M)] or k1 2 < mean [minimum(k; : i =3,4,...,M)]
out of 100 or 1000 simulations (Xiang et al., 2002). When a newly proposed
statistical method is for estimating a parameter, performance of the method is
assessed using coverage probability (CP), also called Type I error, which is de-
fined as the proportion of confidence intervals that contains the hypothetical value
of the parameter in a given simulation (Kontopantelis & Reeves| 2012; [Trikali-
nos et al. 2013; Montez-Rath et al., 2017). Where a 95% confidence interval is
used, a CP close to 0.95 is desirable, and CP above 0.95 is indicative of inefficient
method, while CP below 0.95 implies the new method is inaccurate (Kontopantelis

& Reeves|, 2012; [Trikalinos et al., 2013).

In addition, power probability, also known as Type II error, for the parameter
being estimated is used (Kontopantelis & Reeves, 2012). Further, bias or standard-
ized bias is used, this is the difference between the true or simulated parameter
value and its estimate, as a percentage of the estimate’s standard error. Finally,
the mean squared error (MSE) is also used, this is the squared difference between
the true or simulated parameter value and its estimate, averaged over number of
simulations. The bias and MSE close to zero are preferred for a good estimator

(Trikalinos et al., 2013; Montez-Rath et al 2017).

The following steps summarise the process used to simulate data in R:

Step 1: Set up data frame for j = 10,20,50 clusters, each with n; =80 and 500,

and n = j xnj,

75



Step 2: Sample X1 from Binomial(N,1,0.7), X2 from N(0,1), and b; from N(0,0.4%),

Step 3: Multiply X7, X5 with respective coefficients 1 = 0.5 and s =1,

Step 4: Sample survival times ¢j; from Exponential(1) using model (3.16) and

‘simsurv’ package,

Step 5: Sample 0;; from Binomial(N,1,0.4),

Step 6: Merge and save the dataset (X1, X2, 05, cluster;,bj,t;;),

Step 7: Replicate the data in Steps 1 to 6 by 100 and 1000 simulations,

Step 8: Repeat Steps 1 to 7 with first two clusters having 7" generated from model

with perturbed parameters as described before.

The clustered survival model (3.16) was fitted to each of the simulated dataset
and the proposed outlier measure was computed for each cluster. The performance
of the proposed statistic was evaluated as per criterion indicated in preceding
paragraphs. The results are presented in the following section. The R codes that

were used are given as appendices.

3.3.1 Simulation results when separate perturbations were

done to 31 or 3> or b; in first two clusters

The plots in Figure 3.1 for selected cases of the simulations indicate that the outlier
statistic detected clusters 1 and 2, as outliers, as per the cutoff criterion given in
previous section, when the perturbations involved fixed- and not random-effects.
The plots of the statistic were out of range in the first two clusters for the case that

involved 1, and they remained consistent with the rest clusters for samples with
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perturbed random effects. The rest of the results on success rates of the proposed

statistic are given in Tables 3.1 and 3.2.

stddized outlier statistic
stddized outlier statistic
N

0 10 20 30 40 50 0 10 20 30 40 50
cluster id cluster id

(a) Plots of outlier statistic for a case of data (b) Plots of outlier statistic for a case of data
with perturbed b~ (15,5.5%) in 2 of 50-clusters with perturbed ; = 2.7 in 2 of 50-clusters sam-
sample, each with 80 subjects and with 100 repli- ple, each with 500 subjects and with 100 repli-
cations cations

Figure 3.1: Plots of the proposed outlier statistic when perturbed models were
used in first two clusters. Source: Researcher.

The results in Table 3.1 show that the proposed outlier statistic was effective,
when the perturbations involved fixed and not random effects. When 3; was per-
turbed, the residual correctly identified the affected two clusters a minimum of
0.4% and up to 100% of the simulations. Where the adjustments concerned (s,
the statistic correctly identified the two clusters at least 57% and up to 100% of
the times. Adjusting random effects in the model did not cause the cluster to be

outlier, the success rates of the statistic were all zero.

Further, performance of the statistic improved with cluster sample size and
fixed effect size. In addition, the success rates of statistic converged to the same
values between 100 and 1000 replications, for scenarios with large cluster sample
size. There was a slight drop in the rates at 1000 simulations in cases of low cluster
sizes. The results also show that the outlier statistic performed equally across
different number of clusters per data set, holding constant the cluster sample size

and fixed effect size.
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Table 3.1: Percentage of times per 100 or 1000 simulations in which cluster 1 or 2
was detected as outlier by proposed statistic; a case of separate perturbations to
bi, B1 or B2, under 10, 20 or 50 clusters per dataset, each with 80 or 500 subjects

100 replicates 1000 replicates
M n; B [ b1 2 %Clusterl  %Cluster2 %Clusterl %Cluster2
10 80 05 1 N(10,2.5%) 0 0 0 0
80 0.5 1 N(15,5.5%) 0 0 0 0
10 500 0.5 1 N(10,2.5%) 0 0 0 0
500 0.5 1 N(15,5.5%) 0 0 0 0
20 80 0.5 1 N(10,2.5%) 0 0 0 0
80 0.5 1 N(15,5.5%) 0 0 0 0
20 500 0.5 1 N(10,2.5%) 0 0 0 0
500 0.5 1 N(15,5.5%) 0 0 0 0
50 80 0.5 1 N(10,2.5%) 0 0 0 0
80 0.5 1 N(15,5.5%) 0 0 0 0
50 500 0.5 1 N(10,2.5%) 0 0 0 0
500 0.5 1 N(15,5.5%) 0 0 0 0
10 80 18 1  N(0,04% 0 0 0 0
80 27 1  N(0,0.4%) 20 17 22 22
10 500 1.8 1  N(0,0.4%) 50 50 25.8 24.9
500 2.7 1 N(0,0.4?) 100 100 88.9 89.6
20 80 1.8 1  N(0,0.42) 3 3 0.6 0.4
80 2.7 1  N(0,0.4%) 17 7 2.2 1.7
20 500 1.8 1  N(0,0.4%) 84 83 17.4 18.9
500 2.7 1 N(0,0.4?) 96 100 95.2 95.5
50 80 18 1  N(0,0.4%) 11 15 8.0 8.2
80 27 1 N(0,04?) 6 2 0.7 0.7
50 500 1.8 1  N(0,0.4%) 57 59 31.7 34.6
500 2.7 1 N(0,0.4?) 100 98 98.5 97.5
10 80 0.5 2.0 N(0,0.4%) 95 92 57 59.6
80 0.5 25 N(0,0.4?) 100 100 92.7 93.8
10 500 0.5 2.0 N(0,0.4%) 100 100 99.9 99.6
500 0.5 2.5 N(0,0.4?) 100 100 100 100
20 80 0.5 2.0 N(0,04%) 82 83 72.8 4.7
80 0.5 25 N(0,0.4?) 99 98 92.5 93
20 500 0.5 2.0 N(0,0.47) 100 100 99.7 100
500 0.5 2.5 N(0,0.4?) 100 100 99.7 99.7
50 80 0.5 2.0 N(0,04%) 93 89 79.6 80.4
80 0.5 25 N(0,047) 98 97 87.2 87.8
50 500 0.5 2.0 N(0,0.47) 100 100 99.1 99.1
500 0.5 2.5 N(0,0.4%) 100 100 99.9 99.8
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3.3.2 Simulation results when joint perturbations were done

to 31, 52 and b; in first two clusters

The results in Table 3.2 show that the proposed statistic correctly detected the
two outlying clusters a minimum of 39.1% and up to 100% of the times, when the
joint perturbations involved 3 and 2. Where the joint adjustments were done to
B1, P2 and bj, the success rates ranged from 38.3% and up to 100% of the times.
Thus the ranges of the rates were not different, with or without random effects in
the joint perturbations, implying the contribution of random effects in offsetting

cluster 1 or 2 was negligible.

As with cases of separate perturbations in Table 3.1, there was no tangible
differences in performance of the statistic between 100 and 1000 simulations for
cases with large cluster sizes. Again, the performance of the statistic improved with
cluster sample size and fixed effect sizes. Once again, the proposed outlier statistic
performed equally between different number of clusters per dataset, controlling for

cluster sample size and fixed effect size.

79



Table 3.2: Percentage of times per 100 or 1000 simulations in which cluster 1 or 2
was detected as outlier by proposed statistic; a case of joint perturbations among
bj, f1 and 3o, under 10, 20 or 50 clusters per dataset, each with 80 or 500 subjects

100 replicates 1000 replicates
M n; B [ b1 2 %Clusterl  %Cluster2 %Clusterl %Cluster2
10 80 1.8 2.0 N(0,0.42) 55 68 39.1 41.8
80 2.7 2.5 N(0,0.42) 90 89 74.6 72.7
10 500 1.8 2.0 N(0,0.42) 100 100 99.4 99.1
500 2.7 2.5 N(0,0.4%) 100 100 100 100
20 80 1.8 2.0 N(0,0.42) 58 58 43.4 44.8
80 2.7 2.5 N(0,0.4%) 86 88 70.2 69.6
20 500 1.8 2.0 N(0,0.42) 99 99 98.9 98.6
500 2.7 2.5 N(0,0.4%) 100 100 100 100
50 80 1.8 2.0 N(0,0.4?) 59 54 41.2 39.7
80 2.7 2.5 N(0,0.4%) 86 87 69 66.8
50 500 1.8 2.0 N(0,0.42) 100 100 99 98.5
500 2.7 2.5 N(0,0.4%) 100 100 97.7 98
10 80 1.8 2.0 N(10,2.5%) 75 74 38.7 40.9
80 2.7 2.5 N(15,5.5%) 85 86 74.6 72.6
10 500 1.8 2.0 N(10,2.5%) 100 100 99.3 99.2
500 2.7 2.5 N(15,5.5%) 100 100 100 100
20 80 1.8 2.0 N(10,2.5%) 48 54 38.3 35.4
80 2.7 2.5 N(15,5.5%) 82 76 73.4 73.3
20 500 1.8 2.0 N(1,2.5%) 100 100 97.9 98.4
500 2.7 2.5 N(15,5.5%) 100 100 99.5 99.3
50 80 1.8 2.0 N(10,2.5%) 65 51 41.6 40.8
80 2.7 2.5 N(15,5.5%) 79 80 68.9 71.8
50 500 1.8 2.0 N(10,2.5%) 100 99 96.1 95.2
500 2.7 2.5 N(15,5.52) 100 100 98.7 99.4

3.4 Application to Malawi child survival data

The proposed outlier statistic was applied along with the standard method of vi-
sual inspection of studentized residual (Langford & Lewis, [1998]) on child survival
data, that were collected as part of 2015-16 Malawi Demographic and Health Sur-
vey (MDHS) data. The 2015-16 MDHS, held from 19 October 2015 to 18 February
2016, collected child survival data from women respondents and caregivers aged
15-49 years who provided birth histories. The data set is described in Section 2.6

and summarised in Table B.1. The survey employed a two-stage stratified sampling
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design, with emuneration areas as primary and households as secondary sampling
units. Further information on the 2015-16 MDHS can be found in the survey
report (Malawi National Statistical Office (NSO) & ICF} 2017), and the informa-

tion about the DHS progam and data access are available at www.DHSprogram. com.

In order to balance between sufficient clusters and number of children per clus-
ter, the rural and urban areas in each district were taken as separate clusters,
resulting into 52 sub-districts. Child birth order and sex were used as covariates
in the analysis based on previous studies (Mandal 2001). The Cox frailty model
was fitted to the data and cluster outliers were assessed. The event of interest was
death of a child from any cause before 60 months of age, as in Section 2.6. The
event-time was age in months as at death or censoring point. The ages-at-death
that were recorded as zero months were transformed into random Uniform(0,1)
values to reflect proportions of month-days lived by a child before death or censor-
ing. Administrative censoring was used, and children who were still alive or had

survived up to 60 months were censored. The fitted model was as follows:

hi;j(age) = ho(age)exp(—0.185 x Female —0.214 x Birthorder (317)
3.17

+0.0233 x Birthordersquare + subdistrict).

The model results showed that female children had significantly lower risk of
death than the male children (p-value = 0.0096). While children with higher birth

order had significantly reduced risk of death as in Section 2.6.

3.4.1 Under-Five Mortality Outlier Sub-Districts in Malawi

The computations used the national under-five mortality rate of 63 deaths per
1000 live births (Malawi National Statistical Office (NSO) & ICF}| 2017) as base-
line hazard. The application of the proposed statistic was analysed in comparison
with the visual inspection method for standardised residuals suggested in (Lang-

ford & Lewis, [1998)) to identify outlier clusters.
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The results in Figure 3.2(a) indicate that the proposed statistic had detected
Dedza urban, Nsanje urban, and Chikwawa rural as under-five mortality outlier
subdistricts. This means that these clusters had poorly fitted survival times of the
children compared to the other clusters. On the other hand, the visual inspection
on individual deviance residuals in Figure 3.2 (b) could not conclusively determine

an outlier cluster, as the plots of the deviance residuals highly overlapped across

clusters.
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(a) Estimates of proposed outlier statistic per (b) Plots of deviance residuals for children in
cluster upon fitting the frailty Cox model on each cluster following a frailty model on child
child survival data survival data

Figure 3.2: Outlier assessment results using the proposed group outlier statistic in
comparison with method of visual inspection of standardised residuals (Langford
& Lewis|, 1998)) applied on Malawi child survival data, 2015-16 MDHS. Source:
Researcher
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Chapter 4

Cluster Influence for Survival

Mixed Model

This chapter presents a method for assessing group influence based on the clustered
semiparametric survival model. Techniques that are used in univariate survival
model are revisited, before deriving the influence measure for the multivariate

survival model.

4.1 Background to influence analysis for survival

data

Suppose f is a set of maximum likelihood estimators of model parameters ¢, with
¢ consisting of 3, b;, D, and other parameters, and let é(ij) denotes the estimator
of 0 obtained from the data without i-th observation from j-th cluster. Then,
the influence of i-th data record from j-th cluster on the estimator 6 is defined as
the difference in estimators, Aéij = é—é(m (Das & Gogoil 2015} |Cain & Lange,
1984). This can be obtained for each observation by manually deleting the obser-
vation from data and obtain the difference in parameter estimates upon refitting
the model to the reduced dataset. Also, for nonlinear models that use iteratave

estimation techniques, Aéij can be manually obtained using one-step iterative
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approximation, upon removing a data record. But, these approaches are compu-
tationally demanding, since the model has to be refitted several times. In that
regard, efficient model post-estimation influence statistics that result from fitting

the model to data once are developed and made available in literature.

With generalised linear and linear mixed-effects models, where parameter esti-
mators 6 are obtained analytically, influence measure Aéij is a function of model’s
basic building blocks, i.e. Studentized residuals, error contrast matrix, and in-
verse of covariance matrix of response variable (Zewotir & Galpin|, 2005)). In such
models, Aéij is either computed analytically using methods like Cook’s distance
(D. Cookl, 11977)) or it is approximated for one-step ML estimation using updating
formulae techniques (Zewotir, 2008; Nobre & Singer, 2011)). Others use first-order
Taylor series expansion on score function around é(ij) (Xiang et all 2002). For
Cox proportional hazard (PH) model, the analytic influence techniques such as
Cook’s distance do not apply, since subjects enter the likelihood as members of
various risk sets, such that deleting a data point affects a number of these risk sets

other than one (D. R. Cox, [1972).

Therefore, various approximations for influence statistics have been developed
for univariate survival data. One technique is through first-order Taylor series
expansion about a unity weight w;; of an observation in score function, where
w;j = 0 for a subject that has been removed from data and w;; = 1 otherwise (Cain
& Lange, 1984). The weights w@;; of observations result into a weighted partial
likelihood L(5(ws;)), as well as weighted score function Ug(g, ) for the model.
Subsequently, the weighted ML estimators 6(7@” become B(l) =B or B(O) = B(ij),
where B(ij) is the estimator obtained upon dropping ij-th case in the dataset, and
/3 the one obtained from full data. Then, using first-order Taylor series expansion
about w;; =1, an estimate of influence is given by ABM =f— B(ij) = 85/6@@,

which is obtained by solving for 93 /Ow;; when the score function is equated to
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zero (Cain & Lange, [1984)), as follows:

(AU /DB) (85 dw4;) +0U | dwij =0
(4.1)

0B/ 0w; = (—0U0B) roU ) Oy

where the likelihood for univariate model is: L([t,X) = HT[ZSER(W p——_ey
and the weighted score function is first derivative of logarithm of L(5|t,X) with
respect to 3. The approach in equation (4.1) is also referred to as infinitesimal

jackknife measure of influence of a data record on 3 (Therneau et al., [1990).

A related method is the score residual, which is a product of a subject’s residual

and its extremity in covariate value (Therneau et al. [1990)). It is given by:

og(B) = [ [Xunlt) = Kp(B.0)] dm(ts), (4.2

where m(t;;) = N(tij) — fgij Yij(t)exp(X%(t)B)d]:[O(t) is residual of 7j-th unit at

time ¢;;, also called martingale residual, which measures excess number of events;

ZXijpeitp(Xij;B)A
D sen(ty) ewP(X0)
average of covariate Xjj, over R(t;;) risk sets. The measure (4.2) is used to es-

and p denotes number of covariates; while X, = is the weighted
timate sensitivity of log-likelihood to infinitesimal displacements of 3. Using a
weighted partial likelihood, Therneau et al. (1990) showed that the residual (4.2)

is similar to the jackknife measure (4.1) and that OU/0w;; = (vij1,vij2, ...,’Uijp)T.

The third method is the augmented or perturbed regression model (Storer &
Crowley, (1985; Therneau et al., |1990), which is a one-step update in 0 when a
single indicator covariate is added to the model. The added covariate has value
1 for ij-th data point and 0 for all other observations (Therneau et al., [1990).

The augmented model influence statistic for univariate survival model (Storer &
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Crowley, |1985) is given by:

B1 = Bo+17(50)i(Bo)
= b1 —fo=1""(60)I(%) (4.3)

—]71(30)&]‘
— > tii
Tij — 551_1(50)&3‘7”( 2

where m(t;;) is the martingale residual defined along with equation (4.2), &, =
Ho(Xijp— Xp(ﬁ))exp(Xg 3) represents a column vector from matrix X correspond-
ing to 1's, m;; = Ho(t)(1 — & (ﬁ))emp(ﬁATX;‘;) is the diagonal identity matrix with
entries 1 throughout, except for the subject that has been removed, which has 0
entry, and ¢;; is the indicator covariate that has been added to the dataset (Storer

& Crowley, [1985).

As it may be appreciated, these methods are all related because they are based
on rate of change of the maximum likelihood estimators, as a result of removal of
one record from the data (Therneau et al., [1990). The influence measure approx-
imation techniques are also supported in the Bayesian framework for parameter
estimation for survival semiparametric model. In Bayesian set up for a survival
model, the approximation of case-deletion influence measure is computed by the
Kullback-Leibler divergence, denoted by K (P, P(ij)), between the posterior distri-
butions P of parameter 6 for full data D = {t,0, X} and F;;) for the data without
ij-th subject, D = {t(;;),03), X(ij)} (Cho et al} 2009; Suzuki et al. 2013). The

Bayesian influence measure of a subject on posterior probability is given by:

K(P.P) = [ p01D)og £ 0% a5 (4.4

where p(5|D)aL(B|D)f(B) and p(B| D)) L(B]D;)) f(8) and with f() the pos-

terior distribution of .

Depending on the choice of prior distribution, the computation of the influence
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diagnostic measure (4.4) is obtained from the product of the likelihood and prior
distribution. The computation of the values of the measure is numerically done
using Markov chain Monte Carlo samples from the full data posterior distribution

(Cho et al., 2009; Suzuki et al., 2013]).

This study considered the influence methods that result from the parametric
estimation process, and not the Bayesian estimation. Further, [Therneau et al.
(1990) demonstrated that using the score residual, jackknife, and augmented model
approaches yield similar conclusions about influence of a subject, but the score
residual has a number of advantages including simplicity of interpretation. It
is for this reason that this study applied the method of score residual to derive
counterpart influence statistic for the clustered survival data. The extension is

derived and presented in the next section.

4.2 Proposed influence statistic for multivariate
survival data

Consider a case of shared frailty model for model (1.1), then the joint partial

likelihood function (1.8) will be simplified to:

M 7 exp(X{LB+b; M - 1 M
02):1—[ H p( l]ﬁ TJ) XH (27T(72)716$p _ﬁzbg )
j=li=1 | 2seR(t;) exp(Xy; B+ b)) j=1 20% i3
(4.5)
The full joint partial log-likelihood function is:
M & T T
=D D 0 [(XB+bj)—In > exp(Xy;8+10))

n 1
+log[(2m0?) 2 —2

The score functions for § and b; follow from the log-likelihood (4.6) and are,



respectively, given by:

ol(B,0Y) M [X”_zseml)xsgexmx 3 4+)) -
1] y .

Ug=—"2" 2 — 5ij
R R PP R e X5+ b))

M > Jexp(XLB+b; M
Uy = 2O _ 575t 1 - Zoetty) TP U
86 j=1li=1 ZSER(tlj) 6$p(X8]6+ b]) 0% i=1

The estimates for § and b; are found by solving the score functions (4.7) and
(4.8) simultaneously, when they are equated to zero. The values of estimates are
computed through numerical algorithms, such as Newton-Raphson method, since
the equations (4.7) and (4.8) are not in closed forms (Ripatti & Palmgren) |2000)).
Therefore, effect of dropping a cluster on B can be approximated manually by one-
step Newton-Raphson process, through refitting the model to the data for each
removal of a cluster. However, this is time-consuming as stated before, because it

requires refitting the model for each removal of a cluster.

This study therefore proposes an extension of the score residual (4.2) (Therneau
et al., [1990), that results from fitting the model to data once, to study influence of
clusters on fixed effects estimators from model (1.1). As for estimates of random
effects b, model (1.1) assumes that b; are mutually independent between clus-
ters, hence deleting a cluster will not affect the estimator b for the other clusters.
This has been shown for linear mixed-effects models using first-order Taylor-series
expansion on score function (Xiang et al., |2002). Hence, this study focuses on
deriving group influence statistic for fixed effect estimators B , that depend on ob-

servations from all clusters.

To analyse influence for grouped observations, the study first defines a leverage
and a residual for a single unit ij at a given time ¢;;. The score process (4.7) derived

for the model (1.1) is essentially a row vector of differences between the individual
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17 covariate value and the average for the covariates of all individuals at risk at
time ¢;;. In essence, this is analogous to leverage in linear models (Sarkar et al.,
2011} |Z. Zhang, 2016). For individual i, let r;; = exp(X%3+b;) be its risk score.
Then, at the [j-th event time ¢;;, the Schoenfeld residual (or leverage) (Schoenfeld,

1982), denoted by wy;, is given by:

2seR(ty;) TsiXsi
wi; = Xij —

2 seR(ty;) 'si (4.9)

where rg; = exp(XSTjB+l;j) is the risk score for unit ij in the risk set R(t;;), and
Xjj is the covariate vector of the individual experiencing the event at time ;.
Further, ﬁ and I;j are, respectively, fixed and random effects terms estimated from
the log-likelihood (4.6). In addition, X (.) is a vector whose elements are the con-
ditional weighted means of the covariates values for the individuals at risk of event
at time t;;. Hence, the dimension of (4.9) is 1 x p vector corresponding to each

17-th unit in the risk set.

The quantity (4.9) is also a residual proposed by [Schoenfeld (1982) that sums
the score processes (4.7) of units with failure time at each unique event, assuming
no ties. Denote Wy; as leverages wy; for all n; data points in the risk set and p
covariates, then Wy; will be n; x p matrix. Furthermore, w;; € [—o00,+00], with
mean E(wy;) = E(X);) — E[X(8,bj,tq)] = E(X;) — E(Xy;) = 0. The value 0 of wy;
corresponds to observations with intermediate covariates values and are thus close
to the weighted average for covariate Xj;, and hence their leverage on the fitted
survival curve is negligible. While large negative and positive values of wj; corre-
spond to observations that have unusual covariates values, that are far from the
weighted average of X;;, and hence they have high leverage on the fitted survival

curve (Z. Zhang, 2016]).
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A residual, on the other hand, means the difference between the observed and
fitted outcome. The smaller this is, the better the model’s fit for the observation
of interest (Aguinis et al., 2013} Z. Zhang, 2016|). For survival data, one of the
residuals is the martingale, defined along equation (4.2), which is an estimate of
difference in counts of observed and estimated events at each observation time
(Therneau et all |1990). Extending the univariate martingale residual to multi-
variate survival data model (1.1), we obtain an n; X 1 stacked vector of residuals

for units in the risk set R(;;) given by:

m(ty;) = N(t;;) — ﬁo(t)exp(Xz?B + BJ)

_ m(t1) | | N(t11) — Ho(t)exp(XE 3+ br) |
m(tn,1) N (tn,1) — Ho(t)exp(X L 5+ b1)
m(tlg) N(tlg) —HMt)exp(XlTQB-i—i)z)
(4.10)
= = ’
m(tny2) N (tny2) — Ho(t)exp(XL 55 +b2)
m(tinr) N(t1ar) — Ho(t)exp(XTy B+ bar)
_m(tnMM)_ _N(tnMM) — Hy (t)exp<XgMMB + Z;M>_

where Ho(t) = J*__ho(s)ds is the estimated cumulative baseline hazard. The resid-

ual (4.10) has values in the range (—oo,1], because N(t;) is either 0 or 1 and
Ho(t )exp(Xl]ﬁ—i-b ) has values in the interval [0,00). In addition, E(m(t;;)) =
E(N (7)) —

minus quantity in (4.10) is the average number of events.

E(Ro(t)exp(XEB +b;)) = E(N(t;)) — E(N(t;;)) = 0, since the off-

Both leverage quantity (4.9) and residual (4.10) have correlated values for sub-
jects that are in the same cluster due to shared random effect, but independent

values between clusters. Due to this property, we utilise the independence of clus-
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ters to derive an influence statistic for detecting impact of dropping a cluster on
the estimate of 8. Influence of an observation on regression parameter estimates is
a product of its outlier and leverage values. Many studies, for example (D. Cookl,
1977) for linear models, (Zewotir & Galpin, [2005) for linear mixed-effects models,
(Therneau et all [1990)) for univariate survival models, have shown this. Thus, in
deriving influence statistics, appropriate case-deletion residual and leverage mea-
sures need to be defined first. Using the residual defined in (4.10) and leverage in
(4.9) for model (1.1), we propose an analogue of the score residual (4.2) (Therneau
et all, [1990) to measure influence of a cluster on /3 for the model (1.1) as a vector
product of values of vector (4.10) and those of columns of matrix (4.9) for subjects

under risk set R(¢;) in the same cluster 7, given by:

vi(B) = [m(ti;)]" x Wy. (4.11)

The extended score residual (4.11) is an ((1xn1) X (n1 X p)...(1 X nar) X (nar X
p)) = M x p matrix, as the value v1 () for first cluster will be a (1 xn1) x (n; X p) =
1 x p vector reflecting influence of first cluster on each B for p covariates, while
v2(f) for second cluster will be a (1 x ng) x (ng X p) = 1 x p vector, and so forth.
The measure (4.11) will quantify joint influence of observations in a cluster on
the estimate 5’, since each of its components is a measure of joint extremity of
cluster observations in terms of survival outcomes, as well as in covariates’ values
off the fitted survival curve. Since Wy; in (4.11) has elements w;; € [—00,400] and

m(t;j) € (—o0,1], both with mean 0, then the proposed influence statistic (4.11) is

expected to have mean 0.

Large positive value of the proposed statistic (4.11) means a cluster has ma-
jority of subjects that have high positive values in w;; that coincide with high
positive values in m(t;;), or large negative values in wj; coinciding with large neg-
ative values in m(t;;). Technically, this means the cluster has majority of large

positive leverage subjects that experienced more events (i.e. failed too early) than
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predicted by the model or has most subjects with large negative leverage that sur-
vived longer than predicted by the model. Hence, such a cluster requires further
investigation. On the other hand, large negative value of (4.11) implies that a
cluster has majority of subjects that have large positive leverage wy; that coincide
with large negative values of the residual m(t;;) or viceversa. In other words, this
implies that the cluster has majority of large positive leverage observations that
experienced fewer events (i.e. survived longer) than predicted by the model or has
majority of large negative leverage subjects that failed too early than predicted by

the model. Again, such a cluster will need further investigation.

The values of (4.11) that are close to zero imply most subjects of the corre-
sponding clusters have either leverage close to zero or residual close to zero, hence
such clusters have no issues for follow up investigation. To decide on influential
groups, some studies in linear mixed-effects models have used a cutoff of +2/ VM
for the values of the influence statistic (Belsley et al., 2005; Nieuwenhuis et al.,
2012). However, graphical methods or relative comparisons of influence values
for groups are commonly used (Zewotir & Galpin|, 2007). We applied graphical
techniques in the next chapter to examine influential clusters to the fixed-effects
estimates in the fitted semiparametric survival mixed models using the proposed

influence statistic (4.11).
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Chapter 5

Simulation Results and
Application of the Influence

Statistic

The data generated from a simulation study described in Section 3.3 were utilised
to evaluate performance of the proposed influence statistic developed in Chapter 4.
The two clusters in which the generated survival data from model (3.16) involved
perturbed ; and 3 were subjected to examination to observe whether they would
be identified by the proposed influence statistic. The same assessment criterion
described in Section 3.3 was used, that is, through percentage of simulations for
which the proposed influence statistic correctly identified the two target clusters as
having influence on 1 or 2 using the cutoff given in Section 3.3. Upon fitting the
model (3.16) to the simulated data, the proposed influence statistic was computed

and its performance evaluated.

An inspection of performance of the statistic displayed in Figure 5.1 indicates
that the residual detected influence of the first two clusters on 31 and Bg. The
values of the statistic were outstandingly higher in the first two clusters than in the

other clusters. This study therefore assessed success rates of the proposed influence
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statistic under each simulation scenario using the cutoff presented in Section 3.3.
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(a) Scatter plots of influence statistic vs cluster (b) Scatter plots of influence statistic vs cluster
id for a case of data with perturbed S5 =2.0 in 2 id for a case of data with perturbed 8; = 2.7 in
of 50-clusters sample, each with 80 subjects and 2 of 50-clusters sample, each with 500 subjects
with 100 replications and with 1000 replications

Figure 5.1: Plots of cluster influence on Bl or Bg under different simulations.
Source: Researcher

5.1 Simulation results for influence of cluster 1
or 2 on Bl

Table 5.1 shows success rates of the proposed influence statistic in detecting impact
of cluster 1 or 2 on 81. The results show that the statistic correctly identified the
two influential clusters with high percentage, when the perturbations involved (;
or 1 and [ jointly. The rates for influence of cluster 1 or 2 on 51 were relatively
low, when it was o that was twirked. The results also show that the performance
of the proposed influence residual improved with increasing cluster sample size,
such that the success rates were as high as 100% where cluster size was 500 and
lower with varying degrees when cluster size was 80 subjects. In addition, perfor-
mance of the statistic improved with increasing fixed effect size, this was noticeable

where cluster sample sizes were low.

It is also shown that performance of the influence statistic was not different

between 100 and 1000 simulation sizes, when cluster sample size was 500 subjects.
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But the success rates generally slumped in 1000 replications, when cluster size was
80. Finally, the results show that the influence statistic was equally effective across

different number of clusters per dataset.
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Table 5.1: Percentage of simulations' that identified cluster 1 or 2 as influ-
ential to (5q

100 replicates 1000 replicates
M n; 51 5o %Clusterl %Cluster2 %Clusterl %Cluster2

10 80 1.8 1 84 87 60.9 59.4
80 2.7 1 100 100 99.3 99.2
10 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100
20 80 1.8 1 74 75 46.4 44.9
80 2.7 1 99 99 95.3 95.1
20 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100
50 80 1.8 1 34 31 10.7 11.8
80 2.7 1 75 75 92.7 95.3
50 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100
10 80 0.5 2.0 19 22 42 49
80 0.5 25 36 38 32.3 36.3
10 500 05 2.0 27 29 13.1 15.1
500 0.5 2.5 47 39 41.1 38.5
20 80 0.5 2.0 27 25 10.6 13.1
80 0.5 25 27 31 36.9 40.4
20 500 05 20 29 30 18.9 20.4
500 0.5 2.5 60 o1 43.9 45
50 80 0.5 2.0 30 29 13.2 12.9
80 0.5 25 60 o4 43.7 42.8
50 500 0.5 20 30 28 23.5 22.1
500 0.5 2.5 63 62 47.6 48.6
10 80 1.8 2.0 69 7 97.5 99
80 2.7 25 99 96 84.6 83
10 500 1.8 2.0 100 100 100 100
500 2.7 25 100 100 100 100
20 80 1.8 2.0 70 69 43.8 46.2
80 2.7 25 92 92 76.6 4.7
20 500 1.8 20 100 100 100 100
500 2.7 25 100 100 100 100
50 80 1.8 2.0 67 o1 45.8 44.9
80 2.7 25 86 87 71.9 70.6
50 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

I No perturbations were done to data in other clusters than 1 and 2, in those other
clusters model (3.16) had 5, = 0.5, 53 = 1.
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5.2 Simulation results for influence of cluster 1
or 2 on BQ

The results in Table 5.2 are for success rates of the proposed influence statistic
in identifying cluster 1 or 2 as having influence on By. The findings show that
the proposed influence statistic highly detected impact of first two clusters on Bg,
when it was (2 or jointly (s and (i that was perturbed during data generation.
The success rates of the statistic in detecting influence of cluster 1 or 2 on Bg were

low when it was (51 that was perturbed.

As was the case with Bl, the success rates of the statistic on influence of
cluster 1 or 2 on 32 improved with increasing cluster sample size, as the rates
were consitently higher for cluster sizes of 500 and lower with cluster sizes of 80
subjects. Again, the performance of the statistic improved with increasing fixed
effect size, a situation that was also noticeable in low cluster sizes like before.
Likewise, there was no difference in performance of the proposed influence statistic
between 100 and 1000 simulation sizes, this was much apparent in large cluster
sample sizes. Lastly, it is also shown that the influence statistic performed equally

well in different number of clusters per sample.
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Table 5.2: Percentage of simulations' that identified cluster 1 or 2 as influ-
ential to (o

100 replicates 1000 replicates
M n; 51 5o %Clusterl %Cluster2 %Clusterl %Cluster2

10 80 1.8 1 2 2 0.9 0.7
80 2.7 1 4 4 1.2 1.3
10 500 1.8 1 0 0 0 0
500 2.7 1 0 0 2.6 2.3
20 80 1.8 1 14 12 4.8 5.5
80 2.7 1 0.8 0.6 4.6 4.6
20 500 1.8 1 0.9 1.2 1.3 1.4
500 2.7 1 1 0.8 2 1.2
50 80 1.8 1 34 40 13.7 14.8
80 2.7 1 34 33 19.6 20.0
50 500 1.8 1 26 18 13.4 11
500 2.7 1 18 14 8.5 7.4
10 80 0.5 2.0 94 97 93.8 93.5
80 0.5 25 98 100 98.5 97.9
10 500 05 2.0 100 100 100 100
500 0.5 2.5 100 100 100 100
20 80 0.5 2.0 98 98 93.4 92.7
80 0.5 25 100 100 97.7 97.4
20 500 05 20 100 100 100 100
500 0.5 2.5 100 100 100 100
50 80 0.5 2.0 99 97 94.4 94.6
80 0.5 25 100 100 97.3 97.6
50 500 0.5 20 100 100 100 100
500 0.5 2.5 100 100 100 100
10 80 1.8 2.0 72 7 39.1 42.5
80 2.7 25 99 92 81.6 81.3
10 500 1.8 2.0 100 100 100 100
500 2.7 25 100 100 100 100
20 80 1.8 2.0 64 73 46.7 45
80 2.7 25 88 81 65.2 63.7
20 500 1.8 20 100 100 100 100
500 2.7 25 100 100 100 100
50 80 1.8 2.0 59 93 43.4 434
80 2.7 25 78 74 63.6 61.5
50 500 1.8 2.0 100 100 99.9 99.8
500 2.7 2.5 100 100 100 100

I No perturbations were done to data in other clusters than 1 and 2, in those other
clusters model (3.16) had 5, = 0.5, 53 = 1.
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5.3 Application to Malawi child survival data

Using the 2015-16 MDHS child survival data described in Section 3.4, the proposed
influence statistic was computed. The fitted frailty model in equation (3.17) was
used:

hij(age) = ho(age)exp(—0.185 x Female —0.214 x Birthorder
(5.1)

+0.023 x Birthordersgared + subdistrict).

The study analysed influence of each cluster on effect of being female on child
mortality for better comparison with findings from Section 2.6. The national
under-five mortality rate of 63 deaths per 1000 live births (Malawi National Statis-
tical Ofice (NSO) & ICF||2017) was used as baseline hazard rate. Upon identifying
the influential clusters to the model, their impact on fixed regression parameter
estimates was analysed through re-fitting the model to data without the detected
clusters and observe the changes in the parameter estimates for effect of being

female on child mortality.

5.3.1 Results for influential clusters on effect of being fe-

male on child mortality

The results in Figure 5.2 show that the proposed influence statistic detected Ka-
sungu rural cluster as having outright positive influence on effect of female gender
on child mortality. This means that Kasungu rural cluster had majority of chil-
dren with high leverage on estimated mortality that had also died too early than
predicted by the model, such that dropping this cluster from the model would
cause a significant change on estimated effect of female gender on child mortality.
While Phalombe urban, Karonga rural and Salima urban clusters were identified
as having negative borderline influence on effect of being female on child mortality.

This implies that the three clusters had majority of children with high leverage on
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estimated mortality who had also survived longer than predicted by the model,
such that removing these three clusters from analysis would impact on estimated

effect of female gender on child mortality.
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Figure 5.2: Sub-district level estimates of the proposed influence statistic for effect
of female gender upon fitting a frailty Cox hazard regression model to Malawi child
survival data, 2015-16 MDHS. Source: Researcher

5.3.2 Impact of the identified influential clusters on model

estimate for effect of female gender on mortality

Table 5.3 shows results of model estimates using full Malawi child survival dataset
and also the data without two of the identified influential clusters; Kasungu rural
and Salima urban. The findings indicate that removal of Kasungu rural cluster
from analysis resulted in further reduction in logarithm hazard of death for female
children by 0.0163. Thus, the survival model was better off without data from
Kasungu rural cluster. This was also noticed with the reduction in p-value by
0.0042. While dropping Salima urban cluster increased the hazard of death in fe-
male children by 0.0015. Thus, the data from Salima urban cluster were required
in the model. Again, this is reflected in the p-value that got higher upon removing

this cluster.
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Removing both clusters from analysis resulted in reduction in logarithm of
hazard of death in female children, but not as much as when Kasungu rural cluster
was dropped alone. Thus, the effect of dropping the two clusters at the same
time did not add value to the estimation compared to dropping each one of them
separately. This was the case since Kasungu rural cluster had positive influence,
while Salima urban negative influence on estimate of effect of female gender on
child mortality. The standard errors of the parameter estimates slightly increased
in each case, implying that the original model parameter estimates from full data
were biased. The variance of random effects also got lower in both cases. Further,
the results vindicate the magnitude of influence of each of the two clusters as
reported by the proposed statistic in the previous section. It is shown in Table 5.3
that impact of Kasungu rural cluster on the estimate of effect of female gender on

mortalirt was so huge compared to that of Salima urban cluster.

Table 5.3: Estimates of effect of being female on mortality with and without Kasungu
rural or Salima urban clusters or both in the Malawi child survival dataset

Parameter Full data Without Kasungu rural (diff') Without Salima urban (diff') Without Both (diff!)

A -0.1848 -0.2011 (0.0163) -0.1833 (-0.0015) -0.1996 (0.0148)
se(B) 0.0713 0.0722 (-0.0009) 0.0715 (-0.0002) 0.0723 (-0.0010)
p-value  0.0096 0.0054 (0.0042) 0.0100 (-0.0004) 0.0058 (0.0038)
var(re)  0.0419 0.0399 (0.0020) 0.0418 (0.0001) 0.0397 (0.0022)

diff! = estimate under full data - estimate from reduced data, se(3) is standard error of 3, var(re)
is variance of random effects.
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Chapter 6

Discussion and Conclusions

This chapter discusses the findings from the evaluation of the proposed outlier
and influence statistics for multivariate survival data model. It also discusses the
findings and implications arising from the analysis of clustered child survival data
in Malawi based on a nationally representative health survey. In addition, the
main biostatistical contribution of this PhD work in the broader topics of outlier

and influence statistics for multivariate models has been discussed.

6.1 Discussion of findings

This study set out to develop statistics for detecting outlying and influential groups
of data points in a multivariate survival data model. The group outlier and influ-
ence statistics have been derived. The proposed outlier statistic extends methods
that are developed for the linear mixed-effects model. While the proposed influ-
ence statistic extends the score residual that is developed for the univariate survival
model. In each case, the proposed statistics utilise the model postestimation quan-
tities that have correlated values within clusters, but uncorrelated across clusters.
The proposed statistics have proved to be very effective in identifying outlying and
influential groups of observations in the analysis of multivariate survival data. For
example, when a fixed effect coefficient was perturbed in one cluster, the proposed

outlier statistic correctly identified the affected cluster 99.8% of the time and the
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influence statistic 100% of the time.

The findings have shown that performance of both the proposed outlier and
influence statistics improves with increasing cluster sample size. This results from
lowered uncertainty in repeated sampling that any statistic gains from large sam-
ple size (Hemez et al.| [2010). So, it is likely for an outlying or influential cluster to
be detected as such using the proposed statistics, when cluster sample size is large
enough compared to small cluster sizes. This is also the reason why the success
rates of the statistics were observed to be stable in large simulation sizes com-
pared to small simulation sizes, for cases of large cluster sample sizes, compared
to small cluster sizes. With large cluster sizes, the performance of both outlier
and influence statistics was not affected by the number of repetition of sampling.
This means that the proposed statistics fulfill the property of robustness required
for any statistical tool (Hemez et al., 2010). The success rates of a ‘good’ residual
must converge to the same range of values in repeated experimentations. Further-
more, both proposed statistics were effective regardless of the number of clusters

per dataset.

Evaluation of the proposed statistics has not supported a definitive cutoff for
their application. Thus, relative comparisons of values of the statistics across
clusters suffice to examine outlying or influential clusters of observations to the
mixed survival model (Zewotir & Galpin, 2006). With linear mixed-effects mod-
els, [Nieuwenhuis et al.| (2012)) suggest using a cutoff of 2/v/M to assess influential
groups, but this cannot be suggested as a standard for clustered survival data,
as demonstrated in this study. A search for proper cutoff for examining outlying
and influential clusters in mixed-effects models is still being debated in literature.
Since, each fitted model to data may not be entirely correct for every dataset,
outlier and influence residual cutoffs have to be applied in a flexible manner using

relative comparisons of clusters in a particular dataset as observed by [Zewotir &
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(2000).

With the frailty survival model that was used in this study, in which observa-
tions in one cluster share a random effect that is additive to fixed covariates in
a model and hence in the extended martingale residual, the outlying tendency of
a cluster based on the proposed outlier statistic is largely influenced by the fixed
covariates values of subjects in the model and not values of random effects. Pre-

viously, it has been viewed that the random effects part of a hierarchical model

may have contribution to making clusters outliers (Langford & Lewis, [1998). But

simulation studies conducted as part of this study have shown contrary findings.
Since estimates of random-effects are considered as best linear unbiased predictors

(BLUPs) of the random effects, they may serve to assess correct specification of the

random effects part of the mixed model |Schabenberger; (2005); Zewotir & Galpin|

(2007)); Loy & Hofmann (2014]).

It might be necessary to identify individual outlying and influential subjects

in the identified outlying and influential clusters to understand their contribution

in making the clusters as such (Langford & Lewis| [1998; Zewotir & Galpin|, [2006)).

Ordinarily, | Xiang et al.| (2002) observed that group-level diagnostics are well ap-

plicable to individual-level data through assessing observations nested within each
cluster. This study did not perform subject-level outlier or influence analyses, as
the assumed dependence of observations within a cluster paused a challenge for

such analyses. Likewise, a score residual has potential to diagnose the proportional

hazard assumption in a survival model (Therneau et al., |1990)); this too was not

explored for the proposed influence statistic for clustered survival data.

Perturbing regression parameters to introduce unusual observations in the data

has been a standard practice for evaluating newly introduced diagnostic statistics

(Xiang et al., 2002; Zewotir & Galpin, 2006; Kontopantelis & Reeves, [2012; Montez-|
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Rath et al., 2017). However, for clustered survival data, deciding a threshold for
which a parameter value can cause the survival times in a cluster to be outlying or
the cluster to be influential on regression coefficients would be purely guess-work
of the analyst. The absence of literature on such reference values contributed to
uncertainty in deciding effect sizes for perturbed parameter values during simula-
tions in this study. As an alternative, some studies have used direct mechanical
imputations of unusual values for the response variable for few target subjects
or groups of observations in the already-generated dataset. This is also done on
covariates data by using a different probability distribution to generate covariate

values of the target subjects (Zewotir & Galpinj, 2006; |Cho et al., 2009).

When applied to child survival data from Malawi with 56 clusters, the proposed
outlier statistic identified two urban clusters: Dedza urban and Nsanje urban and
one rural cluster: Chikwawa rural as outliers to child survival in Malawi, based on
a mixed survival model that had covariates: sex and birth order of a child. This
meant the three clusters had majority of children that were poorly fitted by the
model. The three districts are located off the major cities in the country or they
are rural-based. Although, this study did not estimate predicted survival proba-
bilities of children in each subdistrict, it might be that children in the detected
outlying subdistricts are at high risk of death since rural settings are subjected

to low access to health services due to long distance to clinics (Ustrup et al., [2014)).

The results from applying the influence statistic on under-five mortality data
identified four clusters that had influence on the model, one with outright positive
influence and the other three with borderline negative influence. Upon investigat-
ing the clusters, it was confirmed that deleting one with outright positive influence
caused a huge change on regression estimates, while the other with borderline in-
fluence impacted a small change. This confirmed relevance and usability of the

proposed influence statistic for the multivariate survival model. Given survival
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data with large number of clusters, performing the exact delete-one analysis be-
comes computationally demanding and tedious for assessment of cluster influence,
as it involves fitting and re-fitting the model to the data for each removed cluster.
Therefore, the proposed influence statistic becomes practical and time-effective
method for the group influence examination for the clustered survival data model,

as it results from fitting the model once.

Furthermore, none of the influential subdistricts detected through the residual
‘averaging’ method (Jennings, 1986; |Duchateau & Janssen| [2005; |[Legrand et al.,
2006) for univariate survival model reported in Section 2.6 were commonly iden-
tified by the application of the proposed influence statistic in Section 5.3 in this
study. Similarly, none of the outlier clusters reported by the random effects resid-
ual in Section 2.6 were commonly identified by the application of the proposed
outlier statistic in Section 3.4 in this study. But Chikwawa rural subdistrict was
detected as an outlier by both the averaging method of unrivariate survival model
residual in Section 2.6 and the proposed outlier statistic in Section 3.4. The ad-
vantage of using mixed survival model when the data have apparent clustering is
in ensuring the unbiased estimates of regression coefficients (Liang & Zeger, 1993)),
which can in turn put value to the proposed diagnostic statistics in this study, that

are based on fitting a multivariate survival model to clustered survival data.

Overall, the application of this study to child survival data from Malawi showed
that female children were associated with lower risk of mortality in the first five
years of age compared to their male counterparts. It was not the intention of
this study to discuss reasons for this effect beyond evaluating the applicability of
the derived outlier and influence statistics on the data. However, studies have
attributed the trend to genetic and biological makeup as well as preconception
environments that put male babies to higher risk of suffering from diseases than

female children (Pongou, 2013).
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6.2 Limitations and challenges of the study

The simulation and application studies done in this PhD work are subject to some

limitations. This section highlights some of these challenges.

The proposed outlier and influence statistics apply to a clustered survival model
with time-independent covariates and multivariate normal random effects for ana-
lytical convenience. The derivation of the outlier and influence statistics could not
have been straightforward had the model used assumed time-dependent covari-
ates and non-normally distributed random effects, although parameter estimation
methods exist for multivariate survival model with time-dependent covariates and

non-normally distributed random effects (Mandaj, 2011)).

The evaluation of the proposed outlier and influence statistics would have been
enriched had this study accessed a variety of multivariate survival datasets, for ex-
ample, recurrent events data from some longitudinal study. The application data
used had 95% censoring rate, which might have affected the regression parameter
estimates obtained from fitting the multivariate survival model to the data. The
high censoring rate in survival data causes biased estimates in Cox survival mod-

els, especially in low sample-sized data (Lin et al., 2013]).

The derived outlier and influence statistics are based on the conditional mul-
tivariate survival model, in which estimates of fixed- and random-effects model
parameters are simultaneously solved. The techniques may not apply to marginal
multivariate survival model, in which the estimators for fixed- and random-effects
are solved separately (Liang & Zeger| 1993)), although some studies have worked

on diagnostics for marginal models (Russo et al., 2009).

As earlier alluded to, the dependence of observations within clusters for clus-
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tered survival data hampered efforts to think of follow-up outlier and influence
statistics for individual observations within the identified outlying and influential
clusters. The derived methods for cluster level outlier and influence analysis in
this study as well as the existing methods for individual level survival data diag-
nostic analyses (Therneau et al., [1990) are based on assumption of independence

of groups and individual observations, respectively.

6.3 Directions for future research

As highlighted in the previous sections, the model outlier and influence statistics
for clustered survival data are not a widely-studied field. The following areas are

recommended for future work:

e The methods studied in this work are for clustered survival model with time-
constant covariates. However, various formulations of the survival model ex-
ist, for example stratified and time-dependent survival mixed models. Each
choice of the specification has implications on parameter estimation, and
hence on derivations for model diagnostic statistics. Future work could de-
velop outlier and influence statistics for stratified or time-dependent multi-

variate survival model.

o The proposed outlier and influence statistics are post-estimation functions
of model parameter estimators, in which the estimation was done using pe-
nalised joint partial likelihood method (Ripatti & Palmgren| 2000) supported
by the Newton-Raphson maximisation. The model could have been esti-
mated using marginal likelihood construction supported by the EM algorithm
as in |Manda (2011)), all within a frequentist estimation paradigm. Alterna-
tively, Bayesian estimation could also have been used (Manda & Meyer, |2005;
Cho et al., 2009; Suzuki et al. [2013). In addition, normal random effects
were assumed for the frailty effect in the multivariate survival model. Thus

one could look at either having a marginal or Bayesian construction for the
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model or using a different assumption for random effect distribution. It could
be worthwhile to derive similar group outlier and influence statistics based

on different ways of estimating the multivariate survival model.

o The use of graphical methods to display results of the proposed outlier and
influence statistics could not ascertain the degree of outlying or influence of a
cluster to the multivariate survival model. The formal diagnostic hypothesis
tests about the outlying or influential clusters, using the proposed statistics,

have not been developed. This could be an area for future research.

o The proposed influence statistic has been derived for regression parameters.
However, influence statistics cover assessing impact of a subject on likelihood
estimate, fitted values, and other model inferences. Other than assessing the
impact of clusters on covariates via the regression parameters, one could
assess the impact on quantities such as the likelihood function and fitted

values.

6.4 Contribution of the thesis to statistics field

From the outset, it has been stated that while diagnostic statistics are well known
in linear and linear mixed models, there is a paucity of equivalent statistics for
multivariate survival data models. This study was set out in this context, where
appropriate diagnostic statistics for multivariate survival data models have been

derived. Specifically;

o The study contributes to research on model diagnostic statistics for the clus-
tered survival data, by developing the statistics for assessing outlier and
influential groups of observations in multivariate survival model. The out-
lier statistic derived in this study is capable of showing a cluster that has
measurements that are not consistent with the rest of the data in the other

clusters used in the multivariate survival model. Similarly, the proposed
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influence statistic has the ability of showing impact of a cluster on the esti-
mate of regression coefficient when the concerned cluster is dropped from the
modelling. Both statistics will be applied upon fitting a model to clustered
survival data once, hence they are efficient. This contribution will inform
further critique of the knowledge by future researchers in the area of outlier
and influence statistics for clustered survival model. The proposed statistics
will also enhance the analysis of the clustered survival data by the users of

statistics.

« By adapting some limited theory used in linear, linear mixed-effects, and
univariate survival models, this study has shown that a researcher can inno-
vate some statistics in an area that has less developed statistics. Both the
outlier and influence statistics proposed in this study adapted methods that
are available for linear, linear mixed-effects, and univariate survival models
using appropriate mathematical principles. The extensions add to the efforts
made by previous researchers in diagnostic statistics, which will in turn help

future researchers to develop the knowledge further.

6.5 Concluding remarks

Multivariate survival data are commonly encountered in many disciplines, includ-
ing biomedical studies. Statistical software packages are now available to fit a
survival model to such data. However, due to lack of or limited statistics to use in
assessing outlier and influential data points or groups of data points as it is mostly
done in linear models, such an undertaking is seldom done when the analysis of
multivariate survival data is carried out. It was in this context that this PhD
study was set to fill the gap. The outlier and influence statistics for the analysis of
multivariate survival data have been derived. Both statistics have been developed
from adapting and combining similar statistics for univariate survival data and

those derived in linear mixed-effect models. The derived statistics were able to
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correctly identify outlying and influential clusters based on simulation studies.

It is recommended that when an analysis of multivariate survival data is done,

it should be accompanied by an assessment of unusual clusters to avoid having

biased and spurious findings.
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Appendix A: Map of the 28 districts in Malawi, 2020
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Figure A.1: Map of Malawi districts. Source: www.mw.one.un.org
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Appendix B: Child characteristics per sub-district

Table B.1: District-specific child sample, proportion of female children, median
birth order (medBO), and under-five mortality per 1000 live births

sub-District N %Female medBO U-5Mort sub-District N %Female medBO U-5Mort
Chitipa-rural 411 50.4 3 36.5 Ntcheu-rural 597 52.3 3 57.0
Chitipa-urban 75 56.0 2 66.7 Ntcheu-urban 67 388 3 74.6
Karonga-rural 426 49.1 3 46.9 Mangochi-rural 709 50.6 3 29.6
Karonga-urban 112 429 2 35.7 Mangochi-urban 118 45.8 2 33.9
Nkhatabay-rural 480 51.9 3 35.4 Machinga-rural 695 51.1 3 54.7
Nkhatabay-urban 72  52.8 3 27.8 Machinga-urban 82  39.0 2 0.0
Rumphi-rural 451 51.9 3 46.6 Zomba-rural 535 50.1 3 33.6
Rumphi-urban 99 50.5 2 70.7 Zomba-urban 148 52.7 2 20.3
Mzimba-rural 533 46.9 3 31.9 Chiradzulu-rural 484 49.6 3 47.5
Mzimba-urban 157 50.3 2 31.8 Chiradzulu-urban 21  33.3 2 95.2
Likoma-rural 337 48.1 3 29.7 Blantyre-rural 314 46.2 2 57.3
Likoma-urban 55 45.5 3 54.5 Blantyre-urban 319 47.3 2 53.3
Kasungu-rural 575 48.7 3 33.0 Mwanza-rural 366 56.1 3 43.7
Kasungu-urban 119 51.3 2 67.2 Mwanza-urban 91 57.1 3 22.0
Nkhotakota-rural 529 49.5 3 37.8 Thyolo-rural 476 49.6 3 37.8
Nkhotakota-urban 127 46.5 3 23.6 Thyolo-urban 57 35.1 2 70.2
Ntchisi-rural 531 51.0 3 52.7 Mulanje-rural 534 50.6 3 69.3
Ntchisi-urban 54  55.6 2 55.6 Mulanje-urban 66 57.6 2 75.8
Dowa-rural 540 44.8 3 50.0 Phalombe-rural 636 50.2 3 69.2
Dowa-urban 69 44.9 2 14.5 Phalombe-urban 48  50.0 2 41.7
Salima-rural 587 53.5 3 59.6 Chikwawa-rural 557 51.5 3 46.7
Salima-urban 108 47.2 2 27.8 Chikwawa-urban 37 51.4 3 27.0
Lilongwe-rural 500 52.0 3 56.0 Nsanje-rural 462 48.3 3 41.1
Lilongwe-urban 259 50.2 2 50.2 Nsanje-urban 105 51.4 2 28.6
Mchinji-rural 643 48.7 3 84.0 Balaka-rural 521 47.0 3 46.1
Mchinji-urban 85 47.1 2 11.8 Balaka-urban 99 45.5 2 20.2
Dedza-rural 556 51.1 3 57.6 Neno-rural 535 47.9 3 65.4
Dedza-urban 77T 494 2 26.0 Neno-urban 40  50.0 2 0.0
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Appendix C: Sample R codes for simulating data with perturbed pa-

rameters

rm(list = 1ls(all.names = TRUE))
library(survival)
library(simsurv)

library(foreign)

#A1

for (h in 1:1)

{
for (LL in 1:100)
{

set.seed (5557*LL+7552)

n <- 80
j <— 10x*h
N <= j*n

covariatesl <- data.frame(id=1:160,cluster=rep(1:2,each=n),x1=
— rbinom(160,1,0.70) ,x2=rnorm(160,0,1) ,b=rep(rnorm(2,6.5,1.
— 5),each=n))

covariates2 <- data.frame(id=161:N,cluster=rep(3:j,each=n),x1=
— rbinom(N-160,1,0.70) ,x2=rnorm(N-160,0,1) ,b=rep(rnorm(j-2,
< 0,0.4),each=n))

covariates = rbind.data.frame(covariatesl,covariates?2)

parameter <- data.frame(xl=rep(0.5,each=N),x2=rep(l,each=N))

survtimes <- simsurv(dist=’weibull’,lambdas=0.1,gammas=1,x=
< covariates,betas=parameter)

censoring <-data.frame(id=1:N,censoring=rbinom(N,1,0.4))
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mydata <-merge(survtimes,covariates)

mydata2 <-merge(mydata,censoring)

w=dir.create(file.path(dirname("c:/"), pasteO("ScenelOb6.5-1.5",
— 100)))

write.dta(mydata2, pasteO("c:/","ScenelOb6.5-1.5",100,"/Data",LL

— ,".dta"))

#B3

for (c in 1:1)

{

for (LLLLT in 1:100)
{
set.seed(4188812*LLLL+60000215)

n <- 500

j <= 10%*c

N <= j*n

covariates <- data.frame(id=1:N,cluster=rep(l:j,each=n),xl=rbinom
— (N,1,0.70) ,x2=rnorm(N,0,1) ,b=rep(rnorm(j,0,0.4) ,each=n))

parameterl <- data.frame(xl=rep(2.7,each=1000) ,x2=rep(l,each=1000
— )

parameter2 <- data.frame(xl=rep(0.5,each=N-1000),x2=rep(1l,each=N-
< 1000))

parameter = rbind.data.frame(parameterl,parameter2)

survtimes <- simsurv(dist=’weibull’,lambdas=0.1,gammas=1,x=
— covariates,betas=parameter)

censoring <-data.frame(id=1:N,censoring=rbinom(N,1,0.4))

mydata <-merge(survtimes,covariates)
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#C3

mydata2 <-merge(mydata,censoring)

w=dir.create(file.path(dirname("c:/"), pasteO("Casel0X1-2.7",100)

— ))

write.dta(mydata2, pasteO("c:/","Casel0X1-2.7",100,"/Data",LLLLT,

— ".dta"))

for (ca in 1:1)

{

for (LLLL in 1:100)

{

set.seed (2715*LLLL+55213)

n <- 80
j <= 10*ca
N <= j*n

covariates <- data.frame(id=1:N,cluster=rep(l:j,each=n),x1=
— rbinom(N,1,0.70) ,x2=rnorm(N,0,1) ,b=rep(rnorm(j,0,0.4),
< each=n))

parameterl <- data.frame(xl=rep(0.5,each=160),x2=rep(2.5,each=16
— 0))

parameter2 <- data.frame(xl=rep(0.5,each=N-160),x2=rep(1,each=N-
— 160))

parameter = rbind.data.frame(parameterl,parameter2)

survtimes <- simsurv(dist=’weibull’,lambdas=0.1,gammas=1,x=
— covariates,betas=parameter)

censoring <-data.frame(id=1:N,censoring=rbinom(N,1,0.4))
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mydata <-merge(survtimes,covariates)

mydata2 <-merge(mydata,censoring)

w=dir.create(file.path(dirname("c:/"), paste0("Scenel0X2-2.5",10
— 0)))

write.dta(mydata2, pasteO("c:/","Scenel0X2-2.5",100,"/Data",LLLL

— ,".dta"))
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Appendix D: R code for computing group outlier statistic values from

simulated data

#A. Fitting a clustered survival model and computing extended

— martingale, deviance, score residuals

rm(list=1s())
library(survival)
args (coxph)
library(foreign)
library(data.table)
library(dplyr)

library(readstatal3)

dir <- setwd("c:/SimulationsII/Caseb50X1-2.7-X2-2.5-b15-5.51000") #
— data directory

dat <- list.files(dir, full.names = T) #dir should contain all your
— datal to datal000

listdat <- lapply(dat,read.dtal3) #change to read.dta if using

— earlier versions of stata than 13

coefmat <- matrix(NA,nrow =1000,ncol = 50+2) #define matrix that
— will take the 1000 simulations as rows and it will have
— columns taking 50 random effect estimates and 2 covariates
— coef of data

dim(coefmat)
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pb <- txtProgressBar(min=1,max=1000,style = 3)

tmo<- Sys.time()

for(k in 1:1000)

ntimes <-data.frame(listdat[[k]] %>%count(listdat[[k]]$cluster))$
— n #for displaying cluster sample sizes

model <- coxph(Surv(as.numeric(eventtime),as.numeric(censoring))~
— x1+x2+frailty(cluster, distribution="gaussian", sparse=F,

s method="reml") ,data=listdat[[k]])

for (j in 1:50)
{
dt <- data.frame(cbind(newcluster=1:50,coefxl=rep(coef (model) [1
— 1,50),coefx2=rep(coef (model) [2],50) ,randeffect=coef (model
— ) [-2:-11))
dt2 <- as.data.frame(dt[rep(l:nrow(dt),ntimes),]) #ntimes

— defined above just before the loop

dt2$martingale <- listdat[[k]]$censoring - (0.1xlistdat[[k]]$
— eventtimex*exp(
listdat [[k]]$x1*dt2$coefxi+listdat [ [k]]$x2*dt2$coefx2+dt2$
— randeffect))
dt2$sign=ifelse(dt2%martingale>0,1,-1)
dt2$deviance <- dt2$sign*dt2$martingale*sqrt(-2x(dt2$martingale+

< listdat[[k]]$censoring*log(listdat[[k]]$censoring - dt2$
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< martingale)))
dt2$grandmean <- setDT(dt2) [,lapply(.SD,mean,na.rm=TRUE),.SDcols=
< "deviance"]

listdat[[k]]<- data.frame(cbind(listdat[[k]],dt2))

write.dta(listdat[[k]],file = pasteO("ddat",k,".dta"))
setTxtProgressBar (pb,k)

}

tml<- Sys.time()

tml - tmo

#B. Computing group outlier statistic

outliermat <- matrix(NA,nrow = 50,ncol =8)
outliermat <- data.frame(outliermat)
colnames(outliermat) <- c("ID","meanclusdev","wtngrpVar","grandavg"
— ,"btwngrpVar","ratiovar","sqrtratio","stdratio")
pb <- txtProgressBar(min=1,max=1000,style = 3)
tmo<- Sys.time()
outliermat all = matrix(NA,nrow = 50,ncol =8)
colnames(outliermat_all) <- c("ID","meanclusdev","wtngrpVar","
— grandavg","btwngrpVar","ratiovar","sqrtratio","stdratio")
for(k in 1:1000)
{
outliermat[,1]<- 1:50
outliermat[,2] <- setDT(listdat[[k]])[,lapply(.SD,mean,na.rm=TRUE
— ),by=cluster, .SDcols="deviance"] [, 2]
outliermat[,3]<- setDT(listdat[[k]]) [,lapply(.SD,var,na.rm=TRUE),

— by=cluster, .SDcols="deviance"] [, 2]
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outliermat[,4]<- setDT(listdat[[1]]) [,lapply(.SD,mean,na.rm=TRUE)
— ,by=cluster, .SDcols="grandmean"] [, 2]

outliermat[,5] <- sum(ntimes*(outliermat$meanclusdev - outliermat
— $grandavg))~{2}/(50-1)

outliermat[,6]<- outliermat$wtngrpVar/outliermat$btwngrpVar

outliermat[,7] <- sqrt(outliermat$ratiovar)

outliermat[,8]<- (outliermat$sqrtratio - mean(outliermat$

— sqrtratio))/sqrt(var(outliermat$sqrtratio))

if (k==1) {outliermat all = outliermat}
else {outliermat _all = rbind.data.frame(outliermat _all,outliermat

— )}

setTxtProgressBar (pb,k)

}
write.dta(outliermat_all,file = pasteO("outliermat_all",1000,".dta"

— ))

tml<- Sys.time()

tml - tmo
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Appendix E: R code for computing group influence statistic values

from simulated data

rm(1list=1s())
library(survival)
args (coxph)
library(foreign)
library(data.table)
library(dplyr)

library(readstatal3)

# A. Fitting clustered survival model and computing extended

— martingale and leverage residuals

dir <- setwd("c:/SimulationsIII/Casel10X1-1.8100") #data directory

dat <- list.files(dir, full.names = T) #dir should contain all your
— datal to datalOO

listdat <- lapply(dat,read.dtal3) #change to read.dta if in stata

< earlier versions than 13
pb <- txtProgressBar(min=1,max=100,style = 3) #set process system
— to go thru 100 data files

tmo<- Sys.time() #set start time

for(k in 1:100)
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ntimes <-data.frame(listdat[[k]] %>%count(listdat[[k]]$cluster))$

— n #count sample size in each cluster

model <- coxph(Surv(as.numeric(eventtime),as.numeric(censoring))~
— x1+x2+frailty(cluster, distribution="gaussian", sparse=F,

— method="reml") ,data=listdat[[k]])

for (j in 1:10)
{
dt <- data.frame(cbind(newcluster=1:10,coefxl=rep(coef (model) [1
— 1,10),coefx2=rep(coef (model) [2],10) ,randeffect=coef (model
— ) [-2:-11))
dt2 <- as.data.frame(dt[rep(l:nrow(dt),ntimes),]) #ntimes

— defined above just before the loop

dt2$martingale <- listdat[[k]]$censoring - (0.1xlistdat[[k]]$
— eventtimexexp(
listdat [[k]]$x1*dt2$coefxi+listdat [[k]]$x2*dt2$coefx2+dt2$

< randeffect)) #0.1 is chosen baseline hazard

listdat[[k]]<- data.frame(cbind(listdat[[k]],dt2))

listdat [[k]]$numerator_x1 <- listdat[[k]]$x1 *exp(listdat[[k]]$
— coefxl*listdat[[k]]$x1 +listdat[[k]]$coefx2*listdat[[k]]$x2
— +listdat[[k]]$randeffect)

listdat[[k]]$denominator_x1 <- exp(listdat[[k]]$coefxi*listdat[[k

— 11%$x1 +listdat[[k]]$coefx2xlistdat[[k]]$x2 +1listdat[[k]]$
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— randeffect)

listdat [[k]]$numerator_x2 <- listdat[[k]]$x2 *exp(listdat[[k]]$
— coefxl1*listdat[[k]]$x1 +listdat[[k]]$coefx2*listdat[[k]]$x2
— +listdat[[k]]$randeffect)

listdat [[k]]$sum_numxl <- setDT(listdat[[k]])[,lapply(.SD,sum,na.
— rm=TRUE) ,by=cluster, .SDcols="numerator_x1"] [,2] [rep(1:nrow(
< dt),ntimes),]

listdat[[k]]$sum_denxl <- setDT(listdat[[k]])[,lapply(.SD,sum,na.
— rm=TRUE) ,by=cluster, .SDcols="denominator_x1"][,2] [rep(1:
— nrow(dt) ,ntimes),]

listdat[[k]]$sum_numx2 <- setDT(listdat[[k]])[,lapply(.SD,sum,na.
— rm=TRUE) ,by=cluster, .SDcols="numerator_x2"] [,2] [rep(1:nrow(

— dt) ,ntimes),]

listdat[[k]]$leverage x1 <- listdat[[k]]1$x1 - (listdat[[k]]$sum_
— numx1/listdat[[k]]$sum denx1)
listdat[[k]]$leverage x2 <- listdat[[k]]$x2 - (listdat[[k]]$sum_

— numx2/listdat[[k]]$sum_denx1)

listdat [[k]]$scoresd_x1 <- listdat[[k]]$martingale * listdat[[k
— J]$leverage_x1

listdat [[k]]$scoresd_x2 <- listdat[[k]]$martingale * listdat[[k

< ]1$leverage_x2

write.dta(listdat[[k]],file = pasteO("ddat",k,".dta"))
setTxtProgressBar (pb,k)

}
tml<- Sys.time()

tml - tmo
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# B. Computing group score residual

influmat <- matrix(NA,nrow =10,ncol =5) #generate matrix where rows
<~ are 5 clusters and 5 columns for keeping influence values
influmat <- data.frame(influmat)
colnames (influmat) <- c("ID","Influ x1","Influ x2","stdInflu x1",6"
— stdInflu_x2") #assign names to influence columns for x1 and x
— 2
pb <- txtProgressBar(min=1,max=100,style = 3)
tmo<- Sys.time()
influmat_all = matrix(NA,nrow =10,ncol =5)
colnames(influmat all) <- c("ID","Influ x1","Influ x2","stdInflu x1
— ","stdInflu x2")
for(k in 1:100)
{
influmat[,1]<- 1:10
influmat[,2] <- setDT(listdat[[k]]) [,lapply(.SD,sum,na.rm=TRUE),
— by=cluster, .SDcols="scoresd_x1"][,2]
influmat[,3] <- setDT(listdat[[k]]) [,lapply(.SD,sum,na.rm=TRUE),
— by=cluster, .SDcols="scoresd_x2"][,2]
influmat[,4] <- (influmat$Influ xl-mean(influmat$Influ x1))/sd(
— influmat$Influ x1,na.rm = T)
influmat[,5] <- (influmat$Influ x2-mean(influmat$Influ x2))/sd(

— influmat$Influ x2,na.rm = T)

if (k==1) {influmat _all = influmat}

else {influmat all = rbind.data.frame(influmat all,influmat)}
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setTxtProgressBar (pb,k)

3

write.dta(influmat_all,file = pasteO("influmat_all",100,".dta")) #

— save matrix of 100 influence values for each of 10 clusters

tml<- Sys.time()

tml - tmo
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Appendix F: R code for applying derived outlier statistic on child sur-

vival data used

rm(list=1s())
library(foreign)
library(survival)
args (coxph)
library(data.table)
library(dplyr)

library(readstatal3)

# 1. Read stata data in R, fit model and compute univariate

— outliers

mydata2 = read.dta("c:/Users/User/Desktop/2015 DHS/cleaned2DHS.dta"
— ,convert.factors=T)

tmo<- Sys.time()

clustersize <-data.frame(mydata2 %>%count(v023))$n #count cluster (
— v023) sizes

clustersize

for(k in 1:1)
{
model <- coxph(Surv(as.numeric(time_death),as.numeric(death_
< status))~as.factor(Female Child)+birth_order+birth_

— order2+frailty(v023, distribution="gaussian",sparse=F,
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— method="reml") ,data=mydata2)

for (j in 1:56)
{
dt <- data.frame(cbind(newCluster=1:56,coefSex=rep(
— coef (model) [1],56) ,coefbord=rep(coef (model) [2],
— 56) ,coefbord2=rep(coef (model) [3],56) ,randeffect
— =coef (model) [-3:-1]))
dt2 <- as.data.frame(dt[rep(1l:nrow(dt),clustersize)

— ,1)

dt2$martingale <- mydata2$death_status - (0.063*mydata2$time
— _death*exp(

mydata2$Female_Child*dt2$coefSex++mydata2$birth_order*dt2$
— coefbord+mydata2$birth_order2*dt2$coefbord2+dt2$

— randeffect))

dt2$sign=ifelse(dt2$martingale>0,1,-1)

dt2%deviance <- dt2$sign*dt2$martingale*sqrt (-2x(dt2$
< martingale+mydata2$death_statusxlog(mydata2$death_
— status - dt2$martingale)))

dt2$grandmean <- setDT(dt2) [,lapply(.SD,mean,na.rm=TRUE), .

< SDcols="deviance"]

mydata20 <- data.frame(cbind(mydata2,dt2))

write.dta(mydata20, pasteO("c:/Users/User/Desktop/mydata20.

— dta"))
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+
tml<- Sys.time()

tml - tmo

#B. Computing cluster outliers

outliermat <- matrix(NA,nrow =56,ncol = 6)

outliermat20 <- data.frame(outliermat)

colnames(outliermat20) <- c("ID","meanclusdev","wtngrpVar","

— grandavg", "btwngrpVar","ratiovar")

tmo<- Sys.time()

for(k in 1:1)

{
outliermat20[,1]<- 1:56
outliermat20[,2]<- setDT(mydata20) [,lapply(.SD,mean,na.rm=
— TRUE) ,by=v023, .SDcols="deviance"] [, 2]
outliermat20[,3]<- setDT(mydata20) [,lapply(.SD,var,na.rm=
— TRUE) ,by=v023, .SDcols="deviance"] [, 2]
outliermat20[,4]<- setDT(mydata20) [,lapply(.SD,mean,na.rm=
— TRUE) ,by=v023, .SDcols="grandmean"] [, 2]
outliermat20[,5]<- sum(clustersize*(outliermat20$meanclusdev
< - outliermat20$grandavg)) ~{2}/(56-1)
outliermat20[,6]<- outliermat20$wtngrpVar/outliermat20$
— btwngrpVar
outliermat20 = cbind.data.frame(outliermat20)
}
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write.dta(outliermat20, pasteO("c:/Users/User/Desktop/outlierd20.

— dta"))

tml<- Sys.time()

tml - tmo

143



Appendix G: R code for applying derived influence statistic on child

survival data used

rm(1list=1s())
library(survival)
args (coxph)
library(foreign)
library(ggplot2)
library(ggrepel)
library(dplyr)
library(data.table)

library(readstatal3)

#A. Fitting clustered survival model and computing extended

— martingale and leverage residuals

ourdata = read.dta("C:/Users/User/Desktop/r codes compiled/
— influence3.dta",convert.factors=F)

tmo<- Sys.time()

ntimes <-data.frame(ourdata %>%count(v023))%n #picks sample size in
— each cluster v023

ntimes

for(k in 1:1)
{
model <- coxph(Surv(as.numeric(time_death),as.numeric(death_
< status))~as.factor(Female Child)+birth_order+birth_

— order2+frailty(v023, distribution="gaussian",sparse=F,
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< method="reml") ,data=ourdata)

for (j in 1:56)

{
dt <- data.frame(cbind(newDist=1:56,coefSex=rep(coef(
— model) [1],56) ,coefbord=rep(coef (model) [2],56),
— coefbord2=rep(coef (model) [3],56) ,randeffect=
— coef (model) [-3:-1]))
dt2 <- as.data.frame(dt[rep(1l:nrow(dt) ,ntimes),])
}

dt2%martingale <- ourdata$death_status - (0.063*ourdata$time
— _death*exp(ourdata$Female Child*dt2$coefSex+ourdata$

— birth_order*dt2$coefbord+ourdata$birth order2xdt2$

— coefbord2+dt2$randeffect))
ourdata <- data.frame(cbind(ourdata,dt2))

ourdata$numerator_Sex <- ourdata$Female Child *exp(ourdata$
— Female Child*ourdata$coefSex+ourdata$birth order*

— ourdata$coefbord+ourdata$birth order2*ourdata$coefbord

< 2+ourdata$randeffect)

ourdata$numerator_bord <- ourdata$birth_order *exp(ourdata$
— Female Child*ourdata$coefSex+ourdata$birth order*

— ourdata$coefbord+ourdata$birth order2*ourdata$coefbord

< 2+ourdata$randeffect)

ourdata$numerator_bord2 <- ourdata$birth_order2 *exp(ourdata
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— $Female Child*ourdata$coefSex+ourdata$birth order*
— ourdata$coefbord+ourdata$birth_order2*ourdata$coefbord

< 2+ourdata$randeffect)

ourdata$denominator_Sex <- exp(ourdata$Female Child*ourdata$
— coefSex+ourdata$birth order*ourdata$coefbord+ourdata$

— birth_order2*ourdata$coefbord2+ourdata$randeffect)

ourdata$sum_numSex <- setDT(ourdata) [,lapply(.SD,sum,na.rm=
— TRUE) ,by=v023, .SDcols="numerator_Sex"] [,2] [rep(1:nrow(
< dt) ,ntimes),]

ourdata$sum_numbord <- setDT(ourdata) [,lapply(.SD,sum,na.rm=
< TRUE) ,by=v023, .SDcols="numerator_bord"] [,2] [rep(1l:nrow
< (dt) ,ntimes),]

ourdata$sum_numbord2 <- setDT(ourdata) [,lapply(.SD,sum,na.rm
— =TRUE) ,by=v023, .SDcols="numerator_bord2"] [,2] [rep(l:

< nrow(dt) ,ntimes),]

ourdata$sum_denSex <- setDT(ourdata) [,lapply(.SD,sum,na.rm=
— TRUE) ,by=v023, .SDcols="denominator_Sex"] [,2] [rep(1:

< nrow(dt) ,ntimes),]

ourdata$leverage Sex <- ourdata$Female Child - (ourdata$sum_
— numSex/ourdata$sum_denSex)

ourdata$leverage bord <- ourdata$birth_order - (ourdata$sum_
— numbord/ourdata$sum_denSex)

ourdata$leverage bord2 <- ourdata$birth order2 - (ourdata$

< sum_numbord2/ourdata$sum_denSex)
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ourdata$scoresdSex <- ourdata$martingale * ourdata$leverage_
— Sex

ourdata$scoresdbord <- ourdata$martingale * ourdata$leverage
— _bord

ourdata$scoresdbord2 <- ourdata$martingale * ourdata$

— leverage_bord?2

write.dta(ourdata,file = "data44.dta")

}
tml<- Sys.time()

tml - tmo

# B. Computing group score residual

influmat <- matrix(NA,nrow =56,ncol =4)
influmat <- data.frame(influmat)
colnames (influmat) <- c("ID","Influ Sex","Influ bord","Influ bord2"

— )

tmo<- Sys.time()
influmat_all = matrix(NA,nrow =56,ncol =4)
colnames(influmat_all) <- c("ID","Influ_Sex","Influ bord","Influ_
— bord2")
for(k in 1:1)
{
influmat[,1]<- 1:56
influmat[,2] <- setDT(ourdata) [,lapply(.SD,sum,na.rm=TRUE),

— by=v023, .SDcols="scoresdSex"] [,2]
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influmat[,3] <- setDT(ourdata) [,lapply(.SD,sum,na.rm=TRUE),
— by=v023, .SDcols="scoresdbord"] [,2]

influmat[,4] <- setDT(ourdata) [,lapply(.SD,sum,na.rm=TRUE),
— by=v023, .SDcols="scoresdbord2"] [, 2]

}

write.dta(influmat,file = "influence3.dta")

tml<- Sys.time()

tml - tmo
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