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Abstract

Outlier and influence statistics play an important role in assessing individual

or grouped observations that may have undue impact on the parameter estimates

of a statistical model. The methods are well-developed for linear and linear mixed-

effects models, and are easily implemented in most statistical packages. Though

similar statistics exist for univariate survival models, not much has been done for

models of multivariate survival data. The objective of this PhD work was to derive

outlier and influence statistics for multivariate survival data models, by extending

limited research work on such statistics for linear mixed-effects and univariate

survival models. The derived statistics were evaluated using simulation studies

and illustrated with an analysis of child survival data in Malawi, which had 56

sub-districts (clusters), from both rural and urban areas. The proposed statistics

had a high performance of well over 90% in identifying correctly the outlying or

influential clusters, and the performance improved with increasing cluster size. In

the application to clustered survival data, mostly off-city clusters were identified as

having a different child survival pattern and impactful on regression coefficients and

variance estimates. This study recommends incorporating outlier and influence

assessments when analysing clustered survival data, otherwise the estimates of

both regression slopes and variance components could be biased.
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Chapter 1

Introduction

This chapter presents the research problem for this study as well as the study

objectives. It further provides the outline of this thesis.

1.1 Background

Mixed-effects models have long been applied in statistics to describe heterogeneity

in outcome variable data, when making inferences (McGilchrist & Aisbett, 1991;

McGilchrist, 1993; Donner & Klar, 1994; Yau, 2001; Bienias et al., 2002; Glidden

& Vittinghoff, 2004; Xu et al., 2009; Turkan & Toktamis, 2012). The commonly

applied regression models, such as generalised linear model (glm) assume that a

large portion of variation in the outcome variable is explained by the use of some

fixed covariates in the model. In addition, the glm assumes that the realisations

of the response variable are statistically independent. Both of these assumptions

may not be entirely correct at certain times.

There are situations where the data have apparent clustering or grouping that

can induce dependences of outcome observations from the same cluster. This may

cause both the independence and variance-accounting assumptions of the model

to be unrealistic. The generalised linear mixed-effects model (glmm) solves these

shortcomings. This model maximises utilisation of complex data by making model
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inferences that account for variation in the responses attributable to subjects’ clus-

tering (Ziegler et al., 1998; Galbraith et al., 2010).

The mixed-effects model, also referred to as multi-level model involves specify-

ing a probability distribution for the observation errors at first stage and another

distribution for parameters called random effects in the model at subsequent higher

stage (Laird & Ware, 1982; Langford & Lewis, 1998). A stage or level is defined as

a unit of analysis, this can be a subject or a cluster of subjects. The random pa-

rameters belong to higher level and are assumed to vary across clusters or groups,

as the observed clusters are a random sample from all clusters in the population.

Thus, the model assumes there are interactions of fixed covariates with subjects’

group effects called random covariates, which are also supposed to be estimated

by the model, hence the term mixed-effects model (Langford & Lewis, 1998). The

random effects can be predicted for each group of subjects in the model. But

the focus of the mixed-effects model is usually on measuring variation in outcome

variable in the model that is contributed by the data clustering, known as variance

components (Laird & Ware, 1982). Therefore, an explanatory variable enters the

mixed-effects model as fixed or random effects variable.

In the context of a mixed-effects model, a fixed-effect predictor is a variable

that the analyst expects to have effect on the response variable. By ‘fixed’ it means

the variable is not random in the population, it is measured without errors. For

example, ‘source of drinking water’ for a household can be a fixed-effect variable

in a model that predicts the ‘diarrhoea’ outcome in children aged below five years.

The odds of suffering from diarrhoea for a child whose household drinks piped

water, for instance, are regarded as fixed in the population and the model tries to

estimate these odds.
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While random-effects variables are often the grouping or classification factors

of observations for which the study tries to control their impact on the estimation

of fixed effects. An example for the same diarrhoea model is the variable ‘village

where a child lives’. A village is a discrete variable that may classify a location

for a group of children. In this regard, the analyst may not be interested in the

impact of a ‘child’s village’ on the ‘diarrhoea’ outcome, but how much variation

in ‘diarrhoea’ outcome in the model is attributable to the ‘child’s village’ factor,

when predicting effect of ‘source of drinking water’ on the diarrhoea outcome.

There are counterpart forms of the generalised linear mixed-effects model for

survival data. Survival analysis deals with modelling of an outcome variable that

reflects duration of time from some defined baseline, such as admission of a patient

into hospital, until occurrence of some defined event, such as discharge from the

hospital. When the duration of time is directly modelled on some covariates, the

survival model is called accelerated failure time (AFT) model (Chiou et al., 2014).

Alternatively, the rate of occurrence of the event, referred to as hazard rate, can be

modelled as a function of the covariates, which is the case with Cox proportional

hazard (PH) model (D. R. Cox, 1972).

The Cox PH model assumes that the hazard ratio for two subjects with dif-

ferent measurements on some covariate is a fixed proportionality term that is free

of time. Thus, the covariates have proportional effects on the hazard function

over time. This model is handy to implement in most statistical packages and

easy to interpret, but like a generalised linear model, it assumes that event-times

of subjects are independent (Xue & Schifano, 2017). So, it does not account for

clustering of subjects, which can lead to biased estimates of the fixed effects due to

possible under-estimation of their variances and standard errors (Liang & Zeger,

1993; Manda, 2011). For this reason, mixed-effect survival models are used where

the data have some clustering structures (Guo et al., 1994; Liang et al., 1995;
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Vaida & Xu, 2000).

The mixed-effect survival model can estimate fixed effects, predicted values

of random effects for each cluster, and amount of variation in survival times at-

tributable to clustering of data. A simple case is the shared frailty model, which

incorporates a frailty term in the model that estimates single cluster-specific ran-

dom effects shared by subjects in the same cluster (Ripatti & Palmgren, 2000; Ha

et al., 2011). The shared cluster-effect represents unique features of the cluster

that can affect its baseline risk to the event of interest. The use of cluster-specific

frailties in the model comes from the fact that different clusters have different dis-

positions to failure that can cause subjects in some clusters to be more vulnerable

to failure or be more frail compared to other clusters (Vaupel et al., 1979).

In recent years, the mixed-effects survival model has become an ideal choice

for analysts to account for clustering of data, when applying a survival model

to various designs of clustered survival data. These designs include multi-centre

clinical trials (Ha et al., 2011), complex surveys (Manda, 2011), and longitudinal

studies (Król et al., 2017). However, there is paucity of literature on the critical

examination of the impact of unusual clusters on the inferences that can be drawn

from the survival mixed model. Due to the uniqueness of subjects in different clus-

ters, some clusters may be outliers to the mixed-effects model or may have large

influence on parameter estimates in the model compared to others (Zewotir, 2008).

Moreover, the mixed-effects model is reportedly sensitive to outliers (Zewotir

& Galpin, 2005; Turkan & Toktamis, 2012). This implies that ignoring outliers

and influential observations assessments would cost the conclusions hugely, when

applying the mixed-effects model on data that have some unusual subjects. This

may apply to a survival mixed model. There have been advancements in parameter

estimation for the survival mixed-effects model, for example using penalised partial

4



likelihood method (Ripatti & Palmgren, 2000) or marginal partial likelihood tech-

nique (Manda, 2001) or the L1 penalised (lasso) method (Goeman, 2010) among

others. Nonetheless, little effort has been made to devise diagnostic assessment

methods for the survival mixed model, especially the analysis of cluster outliers

and influence.

The term ‘outlier’, in the context of this study, means a response value that is

exceedingly large or small compared to others, when viewed from the fitted line

or curve (Sarkar et al., 2011; Aguinis et al., 2013; Z. Zhang, 2016). Often times,

outliers are indicative of some unusual process in the data. For example, a commu-

nity with very tall inhabitants due to genetic factors would report very unfamiliar

heights of subjects from the rest communities in a study that is recording height

of subjects in the population. The model outliers are sometimes a result of data

transcription errors. Whatever the cause for outlierness of a data point is, outliers

are important data in the modelling process as they have a bearing on the appro-

priateness of assumptions made on the model’s error variables. A more general

term for model diagnostic statistic is ‘residual’, which simply means the differ-

ence between the observed and fitted outcomes. The smaller this is, the better

the model’s fit for the observation of interest (Aguinis et al., 2013; Z. Zhang, 2016).

Associated with the concept of residual, is a measure called ‘leverage’, which

reports usefulness of a subject to the model-fit. The leverage of an observation is

the distance of the subject’s covariate value from an average of the values for that

covariate (Sarkar et al., 2011; Z. Zhang, 2016). In consequence, subjects with very

large or small covariate values have more leverage than those with intermediate

values (Z. Zhang, 2016). Since a regression line or surface is a linear combination

of covariates’ values mapping to the mean of the response variable, a large leverage

subject will pull the fitted line to pass closer compared to a small leverage subject.

However, inference-specific importance of the subject to the model is analysed
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through a quantity called ‘influence’. This measures the effect of dropping a data

point on the model’s inferences, such as fitted values, regression coefficients or

likelihood (Das & Gogoi, 2015). It is a function of the outlier and leverage.

The measures described above are the focus of this study, especially in the con-

text of clustered survival data. It is important to note that the implementation

units for most national health policies in African states are provinces, districts,

and communities. Thus, it is necessary to study methods of flagging outlying

and influential communities with regard to various health outcomes of subjects, as

these would help stakeholders in public health to plan easily for targeted imple-

mentation of the health policies.

As discussed in previous paragraphs, the biomedical field may involve studying

recurrent events (Król et al., 2017), hence flagging outlying or influential groups of

patients may guide researchers on future treatment options for unusual groups. In

multi-centre clinical trials involving grouped health outcomes, for example, know-

ing outlying or influential communities may help in formulating targeted actions

for the most vulnerable communities (Ha et al., 2011). When outlying groups

are due to measurement errors, as can be observed during interim analyses in

randomised controlled trials, the diagnostic assessment for groups can help in giv-

ing timely advice to the data management team to be cautious during the data

collection phase of the clinical trials.

1.2 Preliminaries of multivariate survival data

analysis

Multivariate survival data arise in different ways. For example, through clustered

survival data, where failure-times of subjects from the same cluster are observed

(Guo et al., 1994). These can be found in multi-centre randomised controlled trials,
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where each centre involves a number of participants (Glidden & Vittinghoff, 2004;

Legrand et al., 2006; Ha et al., 2011), and family genetic studies, where members

of the same family form a group (Xu, 2004; Maia et al., 2014). The other way is

through recurrent events data, in which an individual may experience the event

of interest and of the same type more than once. This could be re-hospitalisation

data for patients of some chronic disease, such as diabetes (Król et al., 2017).

In such scenarios, the interest of an analyst may be to study the variability of

subjects’ survival times across clusters (Xu, 2004). This study concerns with es-

timating associations between certain covariates and survival times, while taking

into account the existing dependences among the survival times.

Suppose there areM distinct clusters, each with nj subjects, (j = 1,2, ...,M ; i=

1,2, ...,nj). Let T denotes a survival time random variable with tij its observed

value for i-th subject in j-th cluster. Further, let Xij denotes the p× 1 covariate

vector for fixed effect and β the corresponding p× 1 vector of fixed effect coeffi-

cients, thus XT
ij = (Xij1Xij2...Xijp) is a transpose of the vector of covariate values

for Xij for i-th subject within the j-th cluster. Furthermore, let δij take the

value of 1 or 0 depending on whether or not the subject experienced the event.

Also, assume that each j-th cluster has specific q× 1 random effects (or frailty)

bTj = (bj1bj2...bjq) with Zij , q×1 vector of the covariates with the random effects,

so that ZTij = (Zij1Zij2...Zijq) becomes cluster covariate value for i−th subject

in j−th cluster. The observed survival times tij for subjects i in cluster j are

assumed to be conditionally independent, given the covariates Xj and random ef-

fect bj (Skrondal & Rabe-Hesketh, 2009). Conditional on vector of cluster-specific

random effect bj , the hazard of failure for subject i in cluster j at time t, denoted

hij(t|β,bj) (Abrahantes & Burzykowski, 2005; Xu et al., 2009) is given by:

hij(t|β,bj) = h0(t)exp(XT
ijβ+ZTijbj) (1.1)

where h0(t) is unspecified baseline hazard function. The assumption with random
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effects is that bj ’s are identically and independently distributed random variables

from a distribution known up to a finite number of parameters. For example,

random effects could be assumed to have multivariate normal distribution, i.e.

bj ∼ N(0,D), where D is q× q diagonal covariance matrix with identical entries

for each level of bj .

As a consequence of (1.1), the corresponding integrated hazard function is:

Hij(t|β,bj) =
∫ t

0
hij(t|β,bj)dt

=
∫ t

0
h0(t)exp(XT

ijβ+ZTijbj)dt

=H0(t)exp(XT
ijβ+ZTijbj).

(1.2)

where H0(t) =
∫ t
0 h0(t)dt is unspecified cumulative baseline hazard function. While

the survival function is:

Sij(t|β,bj) = exp{−
∫ t

0
hij(t|β,bj)dt}

= exp{−
∫ t

0
h0(t)exp(XT

ijβ+ZTijbj)dt}

= exp{−
∫ t

0
h0(t)dt}exp(X

T
ijβ+ZT

ijbj)

= [S0(t)]exp(X
T
ijβ+ZT

ijbj).

(1.3)

where S0(t) = exp{−
∫ t
0 h0(t)dt} is unspecified baseline survival function.

The application of model (1.1) aims to estimate the parameters β and D from

the observed survival times data (tij ,Xij ,Zij , δij) (Abrahantes & Burzykowski,

2005; Xu et al., 2009). Let Z represents n× q covariates with random effects

while X represents n× p covariates with fixed effects (Xu, 2004; Xu et al., 2009;

M. Crowther, 2017) and often covariates in Z are included in fixed effects covari-

ates X. If q = 1,Zij = 1 in model (1.1), then the model becomes a usual univariate

frailty (or random-intercept) model. Further, the log-hazard scale of model (1.1)

is analogous to a linear mixed-effects model, that belongs to the class of models
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called generalised linear mixed-effects model (GLMM) (Ibrahim et al., 2001; Xiang

et al., 2002; Skrondal & Rabe-Hesketh, 2009). For this reason, model (1.1) is also

referred to as Cox proportional hazards mixed-effects model (PHMM) (Palmgren

& Ripatti, 2002; Abrahantes & Burzykowski, 2005; Xu et al., 2009).

The model (1.1) is multivariate because a cluster of subjects (as opposed to

individual subjects) is observed in the random-effects design (Skrondal & Rabe-

Hesketh, 2009). The random-effects bj , which represent various sources of varia-

tions for child survival times that are unique to j-th cluster, relate to logarithm of

hazards of failure linearly and are additive with fixed-effects terms in the model.

In this study, the continuous event-time data will be used to develop group diag-

nostic methods, as opposed to discrete survival-times data. A discussion of fitting

a discrete survival-time model to data is presented in Manda & Meyer (2005).

Furthermore, time-independent covariates is assumed. The inference under the

random effect Cox model (1.1) considers two sets of data: fixed and random ef-

fects.

Suppose tij is the time subject i in cluster j leaves the study, either by expe-

riencing the event (δij = 1) or by surviving to the end of study (δij = 0). If the

subject experiences the event, then its contribution to the likelihood is f(tij |β,bj)

but if the subject survives, its contribution to the likelihood is S(tij |β,bj). Thus,

assuming independence of subjects within a cluster given random effects, the con-

tribution of subject i in cluster j to the likelihood is given by:

Lij(t|β,bj) = [f(tij |β,bj)]δij × [S(tij |β,bj)]1−δij

= [h(tij |β,bj)S(tij |β,bj)]δij × [S(tij |β,bj)]1−δij

=
[
h0(t)exp(XT

ijβ+ZTijbj)
]δij × [S0(t|β,bj)]exp(X

T
ijβ+ZT

ijbj).

(1.4)
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The whole likelihood, conditional on the random effect bj , is

L(t|β,b) =
M∏
j=1

nj∏
i=1

Lij(t|β,bj)

=
M∏
j=1

nj∏
i=1

[
h0(t)exp(XT

ijβ+ZTijbj)
]δij × [S0(t)]exp(X

T
ijβ+ZT

ijbj).

(1.5)

Now, at second stage of the model (1.1) the random effects are considered in

the likelihood. Thus, the complete joint likelihood for β and b is a product of the

whole conditional likelihood in (1.5) and the likelihood of the random effects bj

and it is given by:

L(β,b|t,X,Z) = L(t|β,bj)×
M∏
j=1

f(bj)

=


M∏
j=1

nj∏
i=1

[h0(t)exp(XT
ijβ+ZTijbj)]

δij × [S0(t)]exp(X
T
ijβ+ZT

ijbj)

×
M∏
j=1

f(bj).

(1.6)

where t = t1,t2, ...,tM with each component a nj×1 vector of survival times, b =

b1,b2, ...,bM with each bj a qj×1 vector of random variables, X=X1,X2, ...,XM

where each element is nj × p matrix of covariates with fixed effects, and Z =

Z1,Z2, ...,ZM with each element a nj×qj matrix of covariates with random effects.

The maximisation of the likelihood equation (1.6) requires specification of the

distributions of the baseline hazard function, h0(t), baseline survival function S0(t),

and the random effects f(bj) (Ripatti & Palmgren, 2000; Manda, 2001). In this

study, the multivariate normal distribution was assumed for the random effects.

One approach that is used to obtain the maximum likelihood estimators for the

observed data is through engaging marginal likelihood for β and D (Manda, 2001).

This is done by integrating out the random-effects bj from the complete joint
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likelihood function (1.6) in all clusters, that is,

L(β,D) =
∫ ∞
−∞

...
∫ ∞
−∞

[L(β,b|t,X,Z)]db1...dbM

=
∫ ∞
−∞

...
∫ ∞
−∞


M∏
j=1

nj∏
i=1

[h0(t)exp(XT
ijβ+ZTijbj)]

δij × [S0(t)]exp(X
T
ijβ+ZT

ijbj)

×
M∏
j=1

f(bj)db1...dbM .

(1.7)

The challenge with the marginal likelihood (1.7) is that the integrals are not

of closed forms. Iterative algorithms such as EM algorithm (Manda, 2001) are

therefore used to get the estimate for β and D. Alternatively, joint likelihood

function (1.8) can be used to obtain maximum likelihood estimators for both fixed

and random effects simulatenously. This is what is done in the penalized partial

likelihood estimation method (Ripatti & Palmgren, 2000; Palmgren & Ripatti,

2002). With this method, the partial joint likelihood function for β and bj is

constructed from a product of conditional density of T given random effect bj and

the density of random-effects f(bj), which is very similar to methods that treat

random effects density as a penalty function (Ripatti & Palmgren, 2000; Palmgren

& Ripatti, 2002; Therneau, 2015). The penalised partial joint likelihood function

is given by:

Lp(β,b|t,X,Z) =


M∏
j=1

nj∏
i=1

 exp(XT
ijβ+ZTijbj)∑n

k=1Rk(tij)exp(X
T
ijkβ+ZTijkbj)

δij
×

M∏
j=1

f(bj).

(1.8)

where Rk(tij) is an indicator showing whether k-th subject is still at risk, that is,

not yet experienced the event, at event-time tij , and δij is the censoring indicator.

The estimators β̂ and b̂j are obtained by using numerical techniques, such as

Newton-Raphson method, because the penalised partial log-likelihood from the

likelihood (1.8) is not analytic for one to solve for the parameters. This is done

by alternating between iteratively solving the score functions Uβ and Ubj obtained

from equation (1.8) for β and bj when Uβ and Ubj are equated to zero. Then,

the Laplace approximation is engaged to complete the estimation of covariance
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parameters θ in D by using the estimators β̂ and b̂j to update covariance elements

in D through maximizing the approximate profile likelihood (Palmgren & Ripatti,

2002; Abrahantes & Burzykowski, 2005) given by:

lpl(β̂(θ), b̂(θ), θ)≈−n
2
|logD(θ)|− 1

2
log| ∂2

∂b∂bT
lp(β̂, b̂)|− 1

2
b̂TD−1(θ)b̂. (1.9)

where lp(β̂, b̂) is estimated penalised partial log-likelihood.

However, estimators for standard errors for β̂ obtained from Laplace approxi-

mations are said to be slightly biased as they ignore variation that is brought by

the estimated covariance D̂ (Palmgren & Ripatti, 2002). Instead, the inverse of

observed information matrix of Louis (1982) is used to obtain standard errors for

β̂ and D̂ (Louis, 1982; Vaida & Xu, 2000; Palmgren & Ripatti, 2002; Abrahantes

& Burzykowski, 2005), which is given by:

I−1(β̂, θ̂) = E

([
−∂

2lp(tij , b̂j |β̂, θ̂)
∂(β̂, θ̂)2

|tij , β̂, b̂j
]
−var

[
∂lp(tij , b̂j |β̂, θ̂)

∂(β̂, θ̂)
|tij , β̂, b̂j

])
,

(1.10)

where off diagonal elements are zeroes.

Other numerical estimation techniques that are used for model (1.1) param-

eter estimation include the EM algorithm (Manda, 2001), the Monte Carlo EM

algorithm and the Bayesian MCMC (Ripatti et al., 2002; Hadfield, 2010; Manda,

2011). These are implemented in R software through packages like coxph (Fox,

2002), phmm (Donohue & Xu, 2010), and lme4 (Bates, 2010).
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1.3 Outlier and influence statistics in multivari-

ate survival data

The subject of outlier and influence analysis has received considerable attention

in the last four decades. This spans various types of statistical models, such as

linear model (D. Cook, 1977; Andrews & Pregibon, 1978; D. Cook, 1979; Belsley

et al., 2005; D. Cook & Weisberg, 1982), generalised linear model (Pregibon, 1981;

Andersen, 1992; Sarkar et al., 2011), and linear mixed model (Langford & Lewis,

1998; Fung et al., 2002; Z. Pan & Lin, 2005; Zewotir & Galpin, 2005; Cerioli, 2010;

Nieuwenhuis et al., 2012; Turkan & Toktamis, 2012). In linear mixed models,

group outlier assessment is accomplished through some computation of distance

of observations from location measures (Cerioli, 2010). Such techniques have not

been studied for clustered survival data. Moreover Langford & Lewis (1998), upon

studying outliers in multilevel linear models, proposed further research in non-

linear multilevel models.

In linear and linear mixed models, the influence examination involves perturb-

ing some metric such as log-likelihood by allowing different weights to its compo-

nents. Case deletion is a special example where all cases are given the weight of

1, except the case of interest which is given 0 weight (Zhu et al., 2001). These

approaches are directly applicable to other exponential family models in which

the observations are independent and identically distributed (Tang et al., 2000;

Lee & Xu, 2004). Because of the independence of the components of the metrics,

the impact of individual subjects can be precisely quantified by merely removing

a term from a metric corresponding to the case(s) of interest (Zewotir & Galpin,

2005; Zewotir, 2008).

As for multinomial models, the terms in the likelihood function corresponding

to the cells are not independent. Thus, it does not make sense to merely perturb
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a term in the likelihood function. Simultaneous perturbations of cell probabil-

ities that take into account dependences have been developed and successfully

used to detect influential multinomial observations (Nyangoma et al., 2006). Al-

though Song et al. (2007) demonstrated efficiency of maximization by parts (MBP)

algorithm proposed in Song et al. (2005) over expectation-maximisation (EM) al-

gorithm when determining influence of outliers on model fit in linear mixed-effects

model using multivariate t distribution, they acknowledge that use of the approach

to other model setups such as clustered survival model remains to be investigated.

With the Cox proportional hazard (PH) model (D. R. Cox, 1972), a subject

contributes to the partial likelihood that is summed over several risk sets. Thus,

dropping one observation affects the likelihood function over many risk sets, mak-

ing assessment of case influence a bit complex (Cain & Lange, 1984). While the

delete-one approximation can be obtained analytically from a one-step Newton-

Raphson iteration on the maximum likelihood solution in problems involving like-

lihood from exponential families (Pregibon, 1981), it is not easily done with the

partial likelihood techniques. In the partial likelihood, the one-step approxima-

tions are obtained by re-doing a Newton-Raphson step (A. Cook, 2008), thus

re-computing and re-inventing the information matrix for each observation, which

is computationally expensive (Wei & Su, 1999).

To develop influence examination methods in linear mixed-effects model, the

approach by Zewotir & Galpin (2005) is to use basic building blocks of case dele-

tion, through techniques proposed in Christensen et al. (1992), which necessitate

re-calculation of updated model parameter estimators resulting from dropping a

data record. Then, various residuals for this model are developed by simply sub-

stituting the updated estimators in the existing diagnostic methods from linear

models, such as Cook’s distance (D. Cook, 1977). Zewotir (2008) extended the

approach of updating formulae to assessing joint influence of two or more cases

14



to the linear mixed-effects model. Such an approach has not been exploited for

influence assessment of the clustered survival model (1.1). There have been how-

ever advances in software development for parameter estimation in the clustered

survival model, as demonstrated by Fox (2002); Leucuţa & Cadariu (2008); Munda

et al. (2012); Loy & Hofmann (2014). But the model still lacks structured diagnos-

tic methods. The various diagnostic measures developed for linear mixed-effects

model as discussed in this section may not directly apply to the clustered survival

model (1.1), which invites further research for this model.

1.4 Purpose of the study

This study aimed to derive, validate and apply group outlier and influence statistics

for the clustered failure-time data analysis. This involved extending similar statis-

tics derived for the linear, liner mixed-effects, and univariate failure-time models

to develop appropriate diagnostic statistics for the clustered survival models. In

particular, the martingale-based residuals for univariate Cox model (Therneau et

al., 1990) and concepts of visual inspection of standardised residuals for group

outlier detection in linear mixed model (Langford & Lewis, 1998) were extended

to develop group outlier residuals for the clustered survival models. Influence ap-

proximations based on one-step Newton-Raphson method for maximum likelihood

estimators (Therneau et al., 1990; Cain & Lange, 1984; Storer & Crowley, 1985)

were extended to derive the influence statistic for the clustered survival models.

The performance of the proposed methods was evaluated using extensive simula-

tion studies and the proposed statistics were implemented through an analysis of

mortality of children under the age of five years in Malawi.

The next chapter reviews the residuals and influence measures in various mod-

els, with existing application in clustered survival data. Then the derivation of

the proposed method for group outlier analysis in multivariate survival models is
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presented in Chapter 3 together with its numerical examples. This is followed by

the derivation of the proposed method for cluster influence analysis in Chapter

4. The simulation study and application for influence method are presented in

Chapter 5. Then Chapter 6 is the last one, it discusses the findings and provides

the conclusions of this study.
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Chapter 2

A Review of Diagnostic Statistics

This chapter discusses various residuals and their use in different statistical models.

The current application of some of the diagnostic statistics in clustered survival

data is reviewed.

2.1 General assumptions of statistical models

For single-valued response linear models, the structure falls into the form:

y = Xβ+ ε, (2.1)

where y is n× 1 vector of responses, X a n× p design matrix of covariates, β a

p×1 vector of regression parameters, and ε is n×1 vector of unobserved random

errors from N(0,σ2
ε I).

The general assumptions for these linearised models can be summarised into

the following: a) the observed covariates Xi on subject i jointly affect the mea-

sured response Yi linearly and additively; b) the errors ε for any two subjects

are independent; c) the errors have constant variance, and d) the errors have

normal distribution with mean zero (Yang, 2012). The linearity and additivity

assumptions also apply to the non-linear clustered survival model (1.1), where
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the covariates are related with the logarithm of the hazard function. The extra

assumptions for model (1.1) are that e) the observed covariates Xij for subjects

are independent of measured event-times tij or the hazards of failure for any two

subjects are proportional to one another, referred to as proportional hazards (PH)

assumption, and that f) the random effect values bj are iid Gaussian with mean

zero and some positive covariance.

Similarly, all assumptions of linear model (2.1) and some for clustered survival

model (1.1) apply to the linear mixed-effects model (Laird & Ware, 1982; Zewotir

& Galpin, 2005; Gharibvand & Liu, 2009; Turkan & Toktamis, 2012; J. Pan et al.,

2014; D. Zhang et al., 2016) given by

y = Xβ+Zb+ ε, (2.2)

where {y,X, ε} are as defined in model (2.1), only that the vectors and matrices

are stacked over time or location (cluster), {Z,b} are as defined in Section 1.2,

ε∼N(0,σ2
eI), while b∼N(0,D). Then, var(y) = var(Xβ) + var(Zb) + var(ε) =

0+Zvar(b)ZT +σ2
eI = ZDZT +σ2

eI = G is the overall covariance matrix, which

is the sum of covariances from individual errors and random effects. Also, the

cluster random effects and individual subjects random errors are assumed to be

independent, that is b⊥ ε. The diagonal elements of G are referred to as variance

components. These constitute the model parameters to be estimated along with

the vectors of fixed effects β and random effects b (D. Zhang et al., 2016). The

model assumes that the fixed-effects parameters are not static but vary across

clusters and the modelling tries to capture the varying correlation within cluster.

When Z = I, model (2.2) takes a special case called multi-level or random-

intercept model (Skrondal & Rabe-Hesketh, 2009) given by:

Yij =XT
ijβ+ bj + εij , (2.3)
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where Yij is the observed response value for subject i in cluster j, bj is the cluster-

specific random effect which is the deviation from mean intercept β0, while the

rest of the terms are as defined in models (1.1), (2.1) or (2.2). The model (2.3) has

fixed-effects covariates only whose intercept varies across j clusters (Langford &

Lewis, 1998; Zewotir & Galpin, 2005; Skrondal & Rabe-Hesketh, 2009). Therefore,

the modelling estimates the constant correlation within cluster.

The modelling of data in these various models aims to make statistical estimates

and predictions about the response variable Y or time variable T for survival mod-

els in the context of the assumptions holding true. Diagnostic statistics therefore,

serve to examine fulfillment of the model assumptions so as to generate evidence

on accuracy and adequacy of the fitted model. The assessments are done through

visual inspection or numerical tests (Aguinis et al., 2013). In the next few sec-

tions, the diagnostic statistics for verifying these assumptions in different models

are reviewed.

2.2 Diagnostics for linearity and additivity as-

sumptions

For the generalised linear model (2.1), E(y) = E(Xβ) +E(ε) = Xβ and var(y) =

var(Xβ) + var(ε) = σ2
eI. Because of the normal probability distribution assump-

tion for ε in the model (2.1), y ∼ N(Xβ,σ2
eI). Therefore, the likelihood function

for β, denoted L(β|y,X) is given by:

L(β|y,X) = (2πσ2
e)
−n/2exp

(
− 1

2σ2
e

(y−Xβ)T (y−Xβ)

)
, (2.4)

hence, the log-likelihood function, denoted l(β|y,X) is found by taking the loga-

rithm of the likelihood function (2.4) which gives:
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l(β|y,X) =−n/2log(2πσ2
e)−

1

2σ2
e

(y−Xβ)T (y−Xβ). (2.5)

Differentiating the log-likelihood function (2.5) with respect to β gives the expres-

sion:

d

dβ
l(β|y,X) =

2

2σ2
e
XT (y−Xβ)

=
1

σ2
e

(XTy−XTXβ).

(2.6)

The expression (2.6) is called the score vector or score function, which is a function

of regression parameters and it shows how the likehood function changes with small

changes in each β. Therefore, the Maximum Likelihood (ML) estimator for β is

found by solving for β, when the score function (2.6) is equated to zero. Thus the

ML estimator for β is given by:

β̂ = (XTX)−1XTy. (2.7)

The Maximum Likelihood estimator β̂ in (2.7) is the same as can be obtained using

Least Square estimation (LSE) procedure. The LSE method finds the estimator β̂

that minimises the sum of squared errors in the model.

One useful diagnostic for model (2.1) is the residual, defined in Chapter 1 as

the difference between the observed response vector y and the estimated response

vector ŷ, given by

ê = y− ŷ

= y−Xβ̂

= y−X(XTX)−1XTy

= (In−W)y,

(2.8)

where W = X(XTX)−1XT is the n×n hat matrix, which is a matrix responsible
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for changing elements of y into ŷ. When the residual (2.8) is plotted against val-

ues of each independent variable X, the graph is used to examine fulfillment of

the linearity assumption of model (2.1) for the variable X. Where the plots show

no pattern but pure random points, it means the model is linear in the covariate

X. If some pattern is noticed, it implies the response variable Y is related with

some transformation of the explanatory variable X (Yang, 2012). The additivity

assumption is examined using plots of the same residual (2.8) against the fitted

values Ŷi = Xiβ̂. The plots are expected to consistently wag around 0 to show

that there is no nonlinear term in the covariates to be added to the model. The

same plots can also be used to verify the constant variance or homoscedasticity

assumption (Yang, 2012). In this case, the shape of the graph is supposed to be

the same along the horizontal axis. If the graph widens up or narrows down, it

will imply violation of constant variance assumption of the error term in the model.

As an example, linearity and additivity assumptions are examined on a covari-

ate in a linear model that was fitted to some simulated data. The data had 50

observations and were simulated from a linear model with two covariates using

Stata software version 12. The values of the covariates were sampled from normal

distributions, i.e. X1 ∼N(3.2,6) and X2 ∼N(10,3.5) and the model’s error term

was generated from N(0,2.1). The model used is given by:

Yi = β0 +XT
i1β1 +XT

i2β2 + εi (2.9)

where Yi is the outcome value for subject i, εi the random error for observation i,

the parameters β0 = 1.5, β1 = 2, and β2 = 0.5.

Upon fitting the model to the data simulated by model (2.9), the residual

and fitted values were computed and the results in Figures 2.1 (a) and (b) are

typical examples of a model that fulfills both linearity and additivity, plus constant

variance assumptions, respectively.
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(a) Scatter plots of residual versus X1 for data
generated from model (2.9), showing fulfillment
of linearity assumption.

(b) Scatter plots of residual versus Ŷi from model
(2.9), showing fulfillment of additivity and con-
stant variance assumptions.

Figure 2.1: Examples of graphs for testing linearity, additivity and constant vari-
ance assumptions in linear regression models. Source: Researcher.

To balance off the differences in leverages of different subjects, a scaled residual,

which is also referred to as studentised or standardized residual, is used to serve

the same purposes of a residual highlighted above (Sarkar et al., 2011). The

studentised residual is given by:

λ= [var(ê)]−1/2ê

= [var[(1−W)Ty]]−1/2ê

=
[
(1−W)T var(y)(1−W)

]−1/2
ê

= σ̂−1(1−W)−1/2ê,

(2.10)

where W=X(XTX)−1XT is a leverage matrix as defined before and computation

of variance involves its diagonal elements wii (Loy & Hofmann, 2014).

With the Cox univariate model (D. R. Cox, 1972), the linearity and additivity

relationships of covariates are with the logarithm of the hazard function hi(t|β),

given by:

hi(t|β) = h0(t)exp(XT
i β). (2.11)
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A counterpart residual in survival analysis analogous to residual (2.8) for linear

models is the martingale residual given by:

m(ti) = δi− Ĥ(ti) = δi− Ĥ0(t)exp(XT
i β̂), (2.12)

where δi is censoring status of i-th subject and Ĥ0(t) the fitted cumulative baseline

hazard function. This measures excess events at each observation time ti by com-

puting the difference between the observed and expected number of events over

the interval [0, ti] given the model (Therneau et al., 1990; Fitrianto & Jiin, 2013).

The values of the martingale residual (2.12) are expected to be uncorrelated with

mean zero when the model is correct (Therneau et al., 1990). Individuals who

fail earlier than expected have positive martingale residuals and those who survive

longer have negative martingale residuals.

The assessment of linearity assumption for Cox model (2.11) is also done

through graphical inspection of the values of martingale residual (2.12) plot-

ted against each covariate X. The plots are expected to consistently average

around zero when the variable X has correct linear form with the logarithm of

hazard function logh(ti|β) (Therneau et al., 1990; Fox, 2002; Nguyen & Rocke,

2002; Wilson, 2013). This is assessed with the help of smoothing functions such

as ‘Lowess’ (Fox, 2002). The ‘lowess’ smoother is supposed to be a horizontal

straight line passing through zero (Fox, 2002; Wilson, 2013). An example is

given in Figure 2.2, where the martingale residual has been computed from the

Cox PH model that was fitted on recidivism data discussed in Fox (2002). The

data are from an experimental study of 432 male prisoners, who were observed

for re-arrest during the first year after release from jail, the data are available

on ulr, http://socserv.mcmaster.ca/jfox/Books/Companion/data/Rossi.txt (Fox,

2002). The fitted model is:
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ĥi(arrest) = ĥ0(arrest)exp(0.698×fin+ 0.944×age+ 0.71× race

+ 0.89×wexp+ 1.53×mar+ 0.91×paro+ 1.09×prio+ 0.83× edu)

(2.13)

where arrest’ = duration of time of release from jail to re-arrest,

ĥ0(.) = baseline hazard,

‘age’ = age at time of release,

‘fin’ = whether a person received financial aid or not after release,

‘race’ = race of a person,

‘wexp’ = whether a person had full-time job or not prior to arrest,

‘mar’ = marital status at time of release,

‘paro’ = whether a person was released on parole or not,

‘prior’ = number of prior convictions,

‘edu’ = highest education level (Fox, 2002).

Two of the covariates in the fitted model (2.13), that is, age and prio were

significant, and hence a reduced model with these two covariates was used for post-

estimation analysis examples. Figure 2.2 is an example of martingale residual for

age, which shows that the linearity assumption was slightly violated by the model.
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Figure 2.2: Martingale residual with Lowess smoother for recidivism Cox model
(2.13). Source: (Fox, 2002)

The current use of martingale residual is limited to individual level and not

clustered data. Hence, proper extensions have been defined in this current work

for the clustered survival data.

2.2.1 Linearity and additivity assessments in mixed-effects

models

From model (2.2), y ∼ N(Xβ,ZDZT +σ2
ε I) and in this work, G = ZDZT +σ2

ε I.

Based on the normality assumption for y, the conditional likelihood function for

β is given by:

L(β|y,X,b) = (2π)−n/2|G|−1/2exp
{
−1

2
(y−Xβ)TG−1(y−Xβ)

}
. (2.14)
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This gives the conditional log-likelihood function as:

l(β|y,X,b) =−n
2
log(2π)− 1

2
log|G|− 1

2
(y−Xβ)TG−1(y−Xβ). (2.15)

The maximum likelihood estimator β̂ of the parameter β is found by taking the

partial first derivative of the conditional log-likelihood (2.15) with respect to β

and solve for β when the result is equated to zero. The partial first derivative of

the conditional log-likelihood function (2.15) is:

∂l(β|y,X,b)

∂β
= XTG−1(y−Xβ)

= XTG−1y−XTG−1Xβ.
(2.16)

Then, equating the equation (2.16) to zero and solving for β gives the ML

estimator β̂ as:

XTG−1y−XTG−1Xβ = 0

XTG−1Xβ = XTG−1y

(XTG−1X)−1(XTG−1X)β = (XTG−1X)−1XTG−1y

∴ β̂ = (XTG−1X)−1XTG−1y.

(2.17)

The estimator for b is found by maximising the complete joint likelihood function

for b and y (Xiang et al., 2002; Turkan & Toktamis, 2012; D. Zhang et al., 2016).

Both variables have the normal distribution. Hence, the complete joint likelihood

function for b and y is just the product of the likelihood functions for b and con-

ditional likelihood for y in (2.14). Once again, from model (2.2) ε ∼ N(0,σ2
ε I),

y ∼ N(Xβ,ZDZT +σ2
ε I), and b ∼ N(0,D). Therefore, the complete joint likeli-

hood function will be:

L(b,β|y,X,Z) =
exp

{
−1

2(y−Xβ−Zb)T (σ2
ε I)−1(y−Xβ−Zb)− 1

2b
TD−1b

}
(2π)(n)/2|D|n/2|σ2

ε I|n/2
(2.18)
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Therefore the complete joint log-likelihood function is:

l(b,β|y,X,Z) =−1

2
[(y−Xβ−Zb)T (σ2

ε I)−1(y−Xβ−Zb) +bTD−1b]− log{(2π)n/2|D|n/2|σ2
ε I|n/2}.

(2.19)

Similar to fixed effects, the estimator of random effects b is found by taking first

partial derivative of the joint log-likelihood (2.19) with respect to b and solve for

b when the result is equated to zero (Xiang et al., 2002; Turkan & Toktamis, 2012;

D. Zhang et al., 2016). The partial first derivative of (2.19) with respect to b is

given by:

∂l(b,β|y,X,Z)

∂b
=

2

2
ZT (σ2

ε I)−1(y−Xβ−Zb)− 2

2
D−1b

= ZT (σ2
ε I)−1y−ZT (σ2

ε I)−1Xβ−ZT (σ2
ε I)−1Zb−D−1b

= ZT (σ2
ε I)−1(y−Xβ)− (ZT (σ2

ε I)−1Z+D−1)b.

(2.20)

It follows that equating the result (2.20) to zero and solve for the random effects

b yields the ML estimator or predictor for b given by:

ZT (σ2
ε I)−1(y−Xβ)− (ZT (σ2

ε I)−1Z+D−1)b = 0

(ZT (σ2
ε I)−1Z+D−1)b = ZT (σ2

ε I)−1(y−Xβ)

(ZT (σ2
ε I)−1Z+D−1)−1(ZT (σ2

ε I)−1Z+D−1)b = (ZT (σ2
ε I)−1Z+D−1)−1ZT (σ2

ε I)−1(y−Xβ)

∴ b̂ = (ZT (σ2
ε I)−1Z+D−1)−1ZT (σ2

ε I)−1(y−Xβ̂)

= (ZT IZ+D−1σ2
ε I)−1ZT I(y−Xβ̂)

= DZT (ZDZT +σ2
ε I)−1(y−Xβ̂)

= DZTG−1(y−Xβ̂).

(2.21)

The result in equation (2.21) can also be obtained by applying the formula for

computing conditional mean of a joint multivariate normal distribution of y and

b, given by:

y
b

∼MVN{

Xβ
0

 ,
 G ZD

DZT D

}. Thus, b̂ is found by calculating
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conditional expectation of b given y, that is: E(b̂|y) =E(b̂)+cov(b̂,yT )var−1(y)(y−

E(y)).

Then, the fitted value ŷ, residual ê, and studentized residual λ for linear mixed-

effects model (2.2) must be a linear combination of estimated fixed- and random-

effects (Zewotir & Galpin, 2005; Nobre & Singer, 2011; Zare & Rasekh, 2011;

Turkan & Toktamis, 2012). The fitted value is thus given by:

ŷ = Xβ̂+Zb̂

= Xβ̂+ZDZTG−1(y−Xβ̂)

= Xβ̂+ (G− In)G−1(y−Xβ̂)

= Xβ̂+ (In−G−1)(y−Xβ̂)

= (In−G−1)y+ (In− (In−G−1))Xβ̂

= (In−G−1)y+G−1Xβ̂

= y−G−1y+G−1X(XTG−1X)−1XTG−1y

=
[
In− (G−1−G−1X(XTG−1X)−1XTG−1)

]
y

= (In−R)y,

(2.22)

where R = G−1 −G−1X(XTG−1X)−1XTG−1 is shorthand for the symmetric

matrix in equation (2.22) that transforms observations into residual (Zewotir &

Galpin, 2005; Turkan & Toktamis, 2012). As in univariate linear model, the fitted

value is linear in y for the linear mixed-effects model.

The residual vector follows from the fitted value as:

ê = y− ŷ = Ry, (2.23)

and its studentised form is:
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λ= σ̂−1
ε R−1/2ê, (2.24)

Once the residual statistic (2.23) or (2.24) is obtained, the linearity assumption is

checked in a similar manner as in univariate linear model, that is, through plots

of the residual against each covariate. To discretely study the fit of linear mixed

model (2.2), Schabenberger (2005) and Loy & Hofmann (2014) use a segmented

residual with three levels. Level-1, also called conditional residual is just the resid-

ual form defined in equation (2.23). Then, plotting the residual (2.23) against the

fitted values (2.22) will assess the model misspecification, that is, linearity and

additivity (Schabenberger, 2005; Loy & Hofmann, 2014).

The level-2 residual, called random-effects residual is just the estimates of

random-effects in equation (2.18) obtained through restricted maximum likeli-

hood (Zewotir & Galpin, 2005; Schabenberger, 2005; Turkan & Toktamis, 2012) or

through empirical Bayes prediction or other similar methods (Skrondal & Rabe-

Hesketh, 2009; Loy & Hofmann, 2014). The estimators (2.21) of random effects

are said to be the best linear unbiased predictors (BLUPs) of random effects b in

model (2.2), due to the fact that they are linear in y, unconditionally unbiased,

and ’best’ because they minimise marginal sampling variance of prediction error

(Zewotir & Galpin, 2005; Skrondal & Rabe-Hesketh, 2009). Hence, they are used

to assess the normality assumption of the random-effects through normal quantile-

quantile (Q-Q) plots (Loy & Hofmann, 2014). They also serve to examine linearity

assumption of the random effects in the model.

In addition, the random effects predictors help in investigating additional ex-

planatory variables in data that contribute significantly to the model. This is done

using scatter diagrams, for continuous covariate, and box plots, for categorical co-

variate, plotted against averages of these potential covariates (Loy & Hofmann,

2014). The level-3, marginal or composite residual consists of the fixed-effects
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residual only, as in equation (2.8). This diagnostic is used to analyse the marginal

covariance structure of the model, among others (Schabenberger, 2005; Loy & Hof-

mann, 2014).

The definition of a residual in linear mixed-effects model reviewed in this sec-

tion, i.e., with both fixed- and random-effects parts of the model, has been adapted

to develop diagnostics for the clustered survival model in the present study.

2.3 Assessing distributional assumptions of the

fitted model

With the generalised linear model (2.1), the normality assumption for the error

term is usually checked graphically using, for example, histograms, quantile quan-

tile Q−Q or stem-and-leaf plots of the residual vector ê versus subjects’ indexes

(Yang, 2012). The idea is that if the model is correct, these plots should follow

the normal distribution. Alternatively, the residual is plotted against the fitted

values ŷ and the graph is inspected if it matches the normal distribution. A sub-

stantial criticism for use of graphical approach in assessing the normal distribution

assumption is that it pools all covariates together in making conclusions for the

model fit, yet the model assumes the linear relationship between the variable X

and response Y is conditional on each covariate’s values mapping to the mean of

the response variable (Yang, 2012).

As for Cox univariate survival model (2.11), the formulation does not provide

for the error term, but assumes all sources of individual noise in the event-time

variable T are captured by the observable independent variable X. The esti-

mated cumulative hazard function Ĥ(ti) also called Cox-Snell or generalised resid-

ual (D. Cox & Snell, 1968; Nguyen & Rocke, 2002; Wilson, 2013) is used to assess

the general model fit. Theoretically, the cumulative hazard function H(ti) from

30



equation (1.2) should have a unit exponential distribution (Hosmer Jr et al., 2011).

This is because the survivorship function S(ti) presented in equation (1.3), which

is used to compute the cumulative hazard function, has the property S(k)≤ S(w)

for k ≥w and hence S(ti) is a non-increasing function that is bounded below at 0.

For this reason, the probability distribution of S(ti) can be specified as follows:

P (S(ti)≤ x) = P (ti > S−1(x)) = S(S−1(x)) = x, (2.25)

where S−1(x) is the inverse of S(ti), x the maximum value in the range of S(ti),

and the inequality sign is reversed due to the fact that S(ti) is a decreasing function.

The above result implies that the density of the variable S(ti) is f(S(ti)) = 1

since its cdf P (S(ti) ≤ x) =
∫ x
0 f(u)du = x. Therefore, S(ti) has a Uniform(0,1)

distribution, with Tε[0,∞). Then, through transformation of random variables, it

can be shown that the cumulative hazard function H(ti) will indeed have exponen-

tial distribution with parameter 1. Further, H(ti) is an increasing function with no

bound as time ti gets large, i.e. as ti→∞, H(ti)→−log[1−F (∞)] =−log[0] =∞.

The estimated cumulative hazard function or generalised residual from the fitted

Cox model is given by:

rCS,i = Ĥ(ti) =−log[Ŝ(ti)] = Ĥ0(ti)exp(X
T
i β̂). (2.26)

The assessment of model fit is done by plotting the values of the generalised

residual (2.26) against its raw values. When the graph is a straight line through the

origin with gradient 1, it means estimates of the survivor-times from the model

Ŝ(ti) match the true survivor-times S(ti) in the population and hence the Cox

model is correctly specified (D. Cox & Snell, 1968). The points above the plot-

ted line imply the model over-predicts failure and those below it suggest under-

prediction of failure (D. Cox & Snell, 1968; Nguyen & Rocke, 2002; Wilson, 2013).

Upon computing the Cox-Snell residual for the recidivism model (2.13), the results
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in Figure 2.3 indicate that the model generally fitted the data well, with few cases

that were over-predicted.

Figure 2.3: Estimated survival curve for recidivism Cox model (2.13). Source:
(Fox, 2002)

Few criticisms for the Cox-Snell residual (2.26) relate to difficulties in its in-

terpretation (Zhao et al., 2011; Wilson, 2013) and over-reliance on sample size

(Nguyen & Rocke, 2002). Unlike the Q−Q plots and histograms that are used for

examination of normal distributional assumptions in linear models, the Cox-Snell

residual plots are based on exponential distribution assumption, which is hard to

interpret by non-technical audience (Wilson, 2013). Further, closeness of the Cox-

Snell residual distribution to unit exponential depends on sample size (Nguyen &
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Rocke, 2002). In addition, Zhao et al. (2011) observed that the plots of Cox-Snell

residual may not give exact points of departure when the survival model is incor-

rectly specified.

The main assumption for the Cox PH model (2.11) is the PH assumption stated

in Section 2.1. Each covariate is assessed against this assumption using Schoen-

feld residual (Schoenfeld, 1982; Fitrianto & Jiin, 2013). This residual determines

whether the difference between observed and expected value of each covariate X

at each time point ti is independent of time ti. The computation makes use of

the elements in the score function for β, i.e. Uβ (D. R. Cox, 1972; Grambsch &

Therneau, 1994). The partial likelihood function for univariate Cox model (2.11),

which takes contribution of subjects in the risk sets (D. R. Cox, 1972; Grambsch

& Therneau, 1994), is given by:

L(β|t,X) =
n∏
i=1

[
exp(XT

i β)∑n
k=1Rk(ti)exp(X

T
ikβ)

]δi

, (2.27)

where Rk(ti) is an indicator variable showing whether k-th subject is still at risk,

that is, not yet experienced the event, at time ti, and δi is the censoring indicator.

The log-likelihood function is:

l(β|t,X) =
n∑
i=1

δi

XT
i β− log

n∑
k=1

Rk(ti)exp(X
T
ikβ)

 . (2.28)

From the log-likelihood function (2.28), the score function for β is found by

differentiating the quantity (2.28) with respect to β as:

Uβ =
dl(β|t,X)

dβ

=
n∑
i=1

δi

[
Xi−

∑n
k=1Rk(ti)Xikexp(X

T
ikβ)∑n

k=1Rk(ti)exp(X
T
ikβ)

]

=
n∑
i=1

δi(Xi− X̄(β)),

(2.29)
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where X̄(β) =
∑n

k=1Rk(ti)Xikexp(X
T
ikβ)∑n

k=1Rk(ti)exp(X
T
ikβ)

and it is a weighted average of each covari-

ate’s values for members of the risk set. Therefore, the Schoenfeld residual is the

component rS,i in the score vector (2.29) given by:

rS,i = δi[Xi− X̄(β̂)]. (2.30)

The values of the residual (2.30) are uncorrelated with mean 0 when the model

is correct (Schoenfeld, 1982; Nguyen & Rocke, 2002). To improve the diagnostic

power of this residual, scaled Schoenfeld residuals are used (Grambsch & Therneau,

1994). The plots of rS,i or its scaled version against the observed survival times ti

show a random pattern around zero if the PH assumption holds true. If there is any

systematic pattern, it suggests that there is evidence of dependence of the covariate

on time ti (Fox, 2002; Nguyen & Rocke, 2002). For example, upon computing the

Schoenfeld residual for the recidivism model (2.13) for the variables prio and age,

the results in Figure 2.4 show that the prio variable fulfilled the PH assumption

as many points are departing the smoothing spline band. While, the variable age

violated the PH assumption as the smoothing spline band appears to gain more

points as time increases.
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Figure 2.4: Plots of scaled Schoenfeld residual for age and prio against time in the
Cox recidivism model, with smoothing lines and confidence bands. Source: (Fox,
2002)

.

The scaled Schoenfeld residual also gives a structure for formal test of the

PH assumption (Grambsch & Therneau, 1994; Nguyen & Rocke, 2002). This is

accomplished by the function:

β(ti) = β+ρg(ti), (2.31)

where g(ti) is a time-function, β the coefficient of a variable X being investigated,

and ρ the slope of the relationship between β and time ti. The assessment tests

the hypothesis H0 : ρ = 0. The result of the test provides a complementary deci-
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sion to that of graphical examinations (Grambsch & Therneau, 1994; Fox, 2002).

When H0 is rejected, it means the data provide evidence that the variable X is

independent of time. Otherwise, failing to reject H0 : ρ = 0 implies the covariate

in question is related to time. In such cases, proper transformation of the log cu-

mulative hazard function, such as stratified regression, is recommended (Mehrotra

et al., 2012). For the stratified Cox model, a covariate enters the model in strata

forms of some specified intervals. In addition, time-dependent Cox regression may

be opted for, if stratification approach is not the best solution (Thomas & Reyes,

2014).

The PH assumption extends to the clustered Cox survival model (1.1), although

the current form of the Schoenfeld residual (2.30) does not.

2.3.1 Assessment of assumption for the random effect dis-

tribution in mixed-effects models

With linear mixed-effects model (2.2), a common method for assessing the normal-

ity assumption of random-effects is through using random-effect or level-2 residual

(2.18) described by Claeskens & Hart (2009); Loy & Hofmann (2014). As already

stated in Section 2.2.1, this is done using normal Q−Q plots, histograms, or stem-

and-leaf plots against subjects’ indexes. The use of random-effect residual for this

purpose is based on the fact that they are the Best Linear Unbiased Predictors

(BLUPs) of the model’s random effects (Zewotir & Galpin, 2005).

2.4 Statistics for identifying outlying data points

Reportedly, the probability distribution of the residual (2.8) for generalised linear

model (2.1) is slightly skewed (Sarkar et al., 2011). Through some transformation

of the residual (2.8), a normally distributed quantity is obtained. One of the com-

mon transformations is a ’deviance’ residual and it serves to examine availability
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of potential outliers to the model (2.1). Taking a case of the logistic regression

model, which is a member of the model (2.1) that analyses binary response data,

expressed as:

Yi = ϕ(Xi) + εi, (2.32)

where:

P (Yi = 1|X) = ϕ(Xi) =
exp(XT

i β)

1 + exp(XT
i β)

, (2.33)

with Yi is the measured response for subject i with Yi = 1 for a subject that

possesses the feature of interest and Yi = 0 otherwise; Xi is a covariate value ob-

served for subject i; β the regression coefficient; εi the random error for subject

i with unknown probability distribution; and ϕ(Xi) is the conditional probability

of achieving the feature of interest for subject i whose observed covariate is Xi.

The term ϕ(Xi) in equation (2.33) is also called a logistic function because

it resembles the logistic curve. Further, the link function η = E(Y |X) for model

(2.32) is the logarithm of odds of having Yi = 1 given a covariate value Xi, which

is:

η = E(Y |X) = ϕ̂∗ = log

[
ϕ(Xi

1−ϕ(Xi)

]
=XT

i β. (2.34)

The i-th subject residual for the logistic regression model (2.32) is a binary term

(Sarkar et al., 2011) given by:

êi = Yi− ϕ̂(Xi) =


1− ϕ̂(Xi) if Yi = 1

−ϕ̂(Xi) if Yi = 0,

(2.35)

where ϕ̂(Xi) =
exp(XT

i β̂)

1+exp(XT
i β̂)

is the fitted conditional probability of success given co-

variate values Xi.
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The residual (2.35) implies that the variance of the error term as well as the

response variable in logistic regression is a function of the covariates, as var(êi) =

var(Y |X) = ϕ(Xi)(1−ϕ(Xi)). This is a departure from the convention set in

the general linear model (2.1), where covariates contribute zero variance to the

response. Moreover, plotting the residual (2.35) against the fitted values Yi will

provide some hard-to-interpret information about the model due to the unknown

distribution of the error term in the logistic regression model. Hence, a transformed

measure called Pearson residual is used instead (Sarkar et al., 2011), and it is given

by:

ψi =
êi√

ϕ̂(Xi)(1− ϕ̂(Xi))
=

Ŷi− ϕ̂(Xi)√
ϕ̂(Xi)(1− ϕ̂(Xi))

. (2.36)

The square of Pearson residual (2.36) measures contribution of each response

Yi to the Pearson chi-square test statistic. But the measure does not follow ap-

proximate chi-square distribution (Sarkar et al., 2011). To utilise this residual in

assessing problematic observations, it is standardised so as to have an approximate

normal distribution (Sarkar et al., 2011), given by:

λi =
êi√

ϕ̂(Xi)(1− ϕ̂(Xi))(1−wii)
=

ψi√
(1−wii)

, (2.37)

where wii is the i-th diagonal element of the estimated hat matrix (or Pregibon

leverage) W = Ĝ1/2X(XT Ĝ1/2X)−1XT Ĝ1/2 and ϕ̂(Xi)(1− ϕ̂(Xi)) is conditional

variance of the response variable given X (Sarkar et al., 2011). The residual (2.37)

helps in identifying influential subjects to model (2.32), when the measure (2.37)

is plotted against fitted values or subjects indexes (Sarkar et al., 2011).

The rest residuals for the logistic regression model (2.32) build on the Pearson

statistic (2.36) or its studentised form (2.37). One such residual is the deviance

residual. A model’s deviance Dv = 2(l(MS)− l(MR)), where MS and MR stand
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for saturated and reduced model, respectively, measures the distance between a

component of the log-likelihood of the fitted model and the corresponding com-

ponent that would result if each point was fitted exactly. The models that use

maximum likelihood estimation aim at minimising the sum of deviance residuals.

So, these statistics are computed from the fitted model deviance in order to track

potential outliers and mis-specified subjects. The deviance residual for the i-th

subject is the signed square root of the contribution of that subject to the sum for

the fitted model deviance (Sarkar et al., 2011) given by:

di = sgn(Yi− ϕ̂(Xi)) [−2(Yilogϕ̂(Xi)) + (1−Yi)log(1− ϕ̂(Xi))]
1
2 , (2.38)

where ‘sgn’ is the sign of the i-th subject residual êi, that is, plus or minus. The

plots of the deviance residual (2.38) against the estimated probabilities ϕ̂(Xi) will

show the model’s outliers at cutoff ±2 (Sarkar et al., 2011).

Schall & Dunne (1988) use a different approach to study outliers. They specify

a separate model with raw residual ê as the response vector and engage some tests

to identify outliers to the this model. The outliers to the residual model are also

deemed unusual subjects to the main model with response variable Y . Others use

the scaled residual (2.10) directly to analyse outliers to a model, as by Chebyshev

theorem not more than 5% of values of the studentized measure (2.10) should be

outside the bounds ±1.96, while not more than 1% will be beyond ±2.58 (Dobson

& Barnett, 2008; Sarkar et al., 2011). The observations outside these limits are

considered outliers.

With Cox survival model (2.11), the martingale residual (2.12) has the same

weakness of skewed distribution as the raw residual (2.8) in generalised linear mod-

els. This is because the subject’s censoring condition δi in the measure (2.12) can

only take values of 1 or 0, while the cumulative hazard Ĥ(ti) has strictly posi-
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tive values in the interval [0,∞). This makes the statistic (2.12) to have highly

positively-skewed distribution, with values in the range (−∞,1]. So, the quantity

(2.12) may not detect outliers using values on both ends of its distribution. A

counterpart deviance residual for examining outliers in survival models was stud-

ied by Therneau et al. (1990). Taking the baseline hazard of Cox model as nuisance

parameter, Therneau et al. (1990) engaged the Lagrange multiplier maximization

technique to derive the deviance structure from the fitted model’s deviance. In

so doing, the residual (2.12) was transformed into a statistic that is symmetrical

about zero (Therneau et al., 1990; Fitrianto & Jiin, 2013).

Thus, the deviance residual for univariate Cox model was defined as follows:

di = sgn(m(ti)) [−2(m(ti) + δilog(δi−m(ti))]
1
2 , (2.39)

where m̂(ti) is the martingale residual, δi censoring status, and ’sgn’ is the sign of

the measure (2.9), which is plus or minus. As in generalised linear model, plotting

values of the deviance residual (2.39) against linear predictors logĥi will show

potential outliers to the survival model. The values of (2.39) outside the range

±2.5 are usually considered outliers (Nguyen & Rocke, 2002). Upon computing

the measure (2.39) for the Cox model (2.13), the results in Figure 2.5 show five

people, who were re-arrested earlier than estimated by the model.
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Figure 2.5: Scatter plot of deviance residual versus linear predictor that had co-
variates age and prior conviction in the recidivism Cox model. Source: (Fox, 2002)

This current work extended the definitions of martingale and deviance residuals

reviewed in this section to the clustered survival model (1.1). This was done in

order to explore methods for the group outlier examination in the clustered survival

data.

2.4.1 Outlier identification in mixed-effects models

With the linear mixed-effects model (2.2), the outlier assessment methods are sim-

ilar to those of the generalised linear model (2.1). The only difference is that the

methods are segregated according to levels of data (Langford & Lewis, 1998; Bell

& Malacova, 2004; Loy & Hofmann, 2014). For example, Bell & Malacova (2004)

analysed outlying education outcomes to a multilevel logistic regression model ap-

plied on university applicants in the UK, with two stages: high school progress and

university admissions. While Langford & Lewis (1998) studied outlying schools or
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pupils to the multilevel model using the UK’s local education authority data from

66 schools with 2478 students in 136 school-years. In both cases, the measures that

were used for group outlier examination in the multilevel model were extensions of

those that are used for individual subjects in linear models. In particular, Lang-

ford & Lewis (1998) use the distribution of standardised residuals when plotted

against clusters to assess the clusters that deviate from the rest in the model.

As highlighted already in Section 2.2.1, another approach for group outlier

analysis in linear mixed models is to use the random-effects or level-2 residual

(2.21) plotted against group identities (Loy & Hofmann, 2014). The shortfall of

this approach is that it does not fully utilise the fixed-effects component of the

model in computing the residual, which may lead to unrealistic estimates of true

group outliers. This current work has explored group outlier methods for the sur-

vival mixed model that exhaust all the data structures in the mixed survival model.

A general method for trapping multivariate outliers from all levels of data in

linear mixed-effects model was suggested by Cerioli (2010). The approach uses the

re-weighted minimum covariance determinant (RMCD), similar to Mahalanobis

distance (Cerioli, 2010). The MCD component in RMCD is part of the sample

of h data points, n/2 ≤ h < n, whose covariance has the smallest determinant

(Cerioli, 2010). The method is given by:

d2
i(RMCD) = (Yi− µ̂(RMCD))

T Σ̂−1
(RMCD)(Yi− µ̂(RMCD)), (2.40)

where

µ̂(RMCD) =
1

m

∑
i∈YMCD

$iYi (2.41)

is re-weighted MCD estimate of location and estimate of scatter Σ̂ proportional to
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dispersion matrix is:

Σ̂ =
k(RMCD)(m,n,v)

m−1
×

∑
i∈YMCD

$i(Yi− µ̂(RMCD))
T (Yi− µ̂(RMCD)) (2.42)

with m =
∑
i∈YMCD

$i; v dimension of covariance matrix Σ; and k(RMCD)(m,n,v)

proportionality constant to control for bias (Cerioli, 2010).

The potential of using dispersion of residuals to examine group outliers in mixed

models as suggested by Cerioli (2010) has been explored in this current work to

devise the method for assessing group outliers in clustered survival data.

2.5 Diagnostic statistics for leverage and influ-

ence

For the generalised linear model (2.1), a vector of fitted values ŷ is given by:

ŷ = Xβ̂

= X(XTX)−1XTy

= Wy.

(2.43)

Therefore, a leverage, also called hat or projection matrix W for the fitted model

is the first derivative of the vector of fitted values (2.43) with respect to y given

by:

W =
dŷ
dyT

=
dX(XTX)−1XTy

dyT

= X(XTX)−1XT .

(2.44)

Hence, the leverage of the i-th observation on the i-th fitted value, denoted by wii

is the amount by which the i-th estimate Ŷi would change with respect to the i-th
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observed response value (Nobre & Singer, 2011; Sarkar et al., 2011). This is the

i-th element of the main diagonal of hat matrix W.

The leverage wii is always a ratio, whose range of values is [0,1]. The value

0 means that subject i has no effect on Ŷi and 1 implies the i-th subject has re-

markable effect on the fitted line or that line Ŷi passes through the data point

(Xi,Yi) (Sarkar et al., 2011). Thus large leverage subjects have influence on the

fitted regression line. The working cutoff from which a leverage is considered large

is 2p/n or 4/n, where p is number of parameters in the model and n sample size

(Dobson & Barnett, 2008; Nobre & Singer, 2011). The assessment is also done

using graphical methods, that is, by plotting wii against subject indexes.

As for the linear mixed-effects model (2.2), leverage is defined according to

the level of analysis of the data. This is based on the marginal fitted values and

conditional fitted values for the model. The conditional fitted value for linear

mixed-effects model (2.2) can be expanded using the ML estimators for fixed and

random effects given in equations (2.17) and (2.21) as:

ŷ = Xβ̂+Zb̂

= Xβ̂+ZDZTG−1(y−Xβ̂)

= X(XTG−1X)−1XTG−1y+ZDZTG−1(y−X(XTG−1X)−1XTG−1y)

= X(XTG−1X)−1XTG−1y+ZDZT
(
G−1−G−1X(XTG−1X)−1XTG−1

)
y

= ŷ∗1 + ŷ∗2,

(2.45)

where the component ŷ∗1 = Xβ̂ = X(XTG−1X)−1XTG−1y is the conditional fit-

ted value for fixed effects and ŷ∗2 =Zb̂=ZDZT
(
G−1−G−1X(XTG−1X)−1XTG−1

)
y

the marginal fitted value for random effects.
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This leads to the definition of a generalized leverage matrix for marginal fitted

values or simply generalised marginal leverage matrix (Nobre & Singer, 2011),

given by:

Q1 =
∂ŷ∗1

∂yT

=
∂X(XTG−1X)−1XTG−1y

∂yT

= X(XTG−1X)−1XTG−1.

(2.46)

The generalised marginal leverage matrix Q1 is the overall conditional leverage

for the fixed effects (Fung et al., 2002; Nobre & Singer, 2011). This will measure

influence of an observation or cluster on the conditional fitted value ŷ∗1.

With the second level of the data, the generalised leverage matrix for the

random effect component is given by:

Q2 =
∂ŷ∗2

∂yT

=
∂ZDZT

(
G−1−G−1X(XTG−1X)−1XTG−1

)
y

∂yT

= ZDZT
(
G−1−G−1X(XTG−1X)−1XTG−1

)
.

(2.47)

The leverage matrix Q2 can estimate influence of a subject or cluster on marginal

fitted values of the random effects. The part ZDZT of the generalised marginal

leverage Q2 represents proportion of within-cluster variability explained by the

presence of random effects and it is referred to as generalised random component

leverage matrix (Nobre & Singer, 2011). This component depends on random

covariates and covariance matrix for random effects unlike the entire Q2, which

depends on both fixed and random effects. Hence, ZDZT can serve well in exam-

ining leverage of observations on fitted random effects of the model Nobre & Singer

(2011). The subjects with high leverage in respect of ZDZT in Q2 are expected

to have disproportionate weight on the estimate of the variance components of the
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model.

Now, using the conditional fitted value (2.45) for the linear mixed-effects model,

a generalized joint leverage matrix for subjects on overall fitted values is given by:

Q = Q1 +Q2

=
∂ŷ∗1

∂yT
+
∂ŷ∗2

∂yT

= X(XTG−1X)−1XTG−1 +ZDZT
(
G−1−G−1X(XTG−1X)−1XTG−1

)
.

(2.48)

The diagonal of the quantity Q will measure overall influence of a subject on the

fitted value of the entire model (Nobre & Singer, 2011).

Further transforms of the residual (2.8) are used to examine influence of a sub-

ject in the model. Examples include the Difference in Fit Standardised (DFFITS)

(Belsley et al., 2005) and Cook’s distance (CD) (D. Cook, 1977). The DFFITSi

of subject i is a scaled measure that captures the change in the fitted value Ŷi for

the i-th subject computed after removing subject i from the data (Belsley et al.,

2005). The i-th subject DFFITSi for Ŷi from the linear model (2.1) is given by:

DFFITSi =
(Ŷi− Ŷ(i))

se(Ŷ(i))

= λi

√(
wii

1−wii

)
.

(2.49)

The values of DFFITSi larger than 2×
√
p/n, in absolute sense, where p is the

number of parameters in the model, are considered influential on the fitted value Ŷi.

While the Cook’s distance CDi for the i-th subject for the model (2.1) is the

change in parameter estimates β̂ following removal of i-th data record (D. Cook,
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1977), measured as sum of this change for all parameters in the model, given by:

CDi =
(β̂(i)− β̂)TXTX(β̂(i)− β̂)

pσ̂2
ε

=

(
(XT

(i)X(i))
−1Xi[y−XT

i β̂]
)T

XTX
(
(XT

(i)X(i))
−1Xi[y−XT

i β̂]
)

pσ̂2
ε

=

(
(XT X)−1Xi[y−XT

i β̂]

1−XT
i (XT X)−1Xi

)T
XTX

(
(XT X)−1Xi[y−XT

i β̂]

1−XT
i (XT X)−1Xi

)
pσ̂2

ε

=

 y−XT
i β̂

σ̂ε

√(
1−XT

i (XTX)−1Xi

)


2

XT
i (XTX)−1Xi

p
(
1−XT

i (XTX)−1Xi

)

=
λ2
i

p

var(Ŷi)

var(êi)

=
λ2
i

p

XT
i (XTX)−1Xi

1−XT
i (XTX)−1Xi

=
λ2
i

p

wii
1−wii

,

(2.50)

where σ̂2
ε = êT ê

n−p is estimated variance of random error term, X(i) is the n− 1×

p+1 design matrix without i-th row XT
i of covariates, (XT

(i)X(i))
−1 = (XTX)−1 +

(XT X)−1XiX
T
i (XT X)−1

1−XT
i (XT X)−1Xi

(D. Cook, 1977; Pregibon, 1981). The term wii is i-th diag-

onal element of the leverage matrix for the linear model (2.1), and p is the number

of parameters in the model. The values of CDi (2.50) that are greater than 1 are

usually considered large and their corresponding subjects become targets for influ-

ence on the regression parameter estimates (D. Cook, 1977; Sarkar et al., 2011).

A different approach to case-deletion for assessing influence of the data point

on the fitted value Ŷi is the squared norm of a vector of forecast changes, called

Pena’s Statistic (Peña, 2005; Turkan & Toktamis, 2012). It estimates how deletion

of each data record affects the forecast for a specific observation of interest (Türkan

& Toktamis, 2013). For the general linear model (2.1), the Pena’s statistic, denoted
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ai is given by:

ai =
1

pσ̂2
ε
||ŷ− ŷ(i)||2

=
λ∗2i wii

p(1−wii)

=
e∗2i wii

pσ̂2
ε (1−wii)2

=
wTiiwiie

∗T
i e∗i

pσ̂2
εwii(1−wii)T (1−wii)

,

(2.51)

where e∗i = Ŷi− Ŷ(i) is the displacement in i-th fitted value when the observa-

tion i is deleted; wii is the leverage for subject i from the model with reduced

data; σ̂2
ε = êT ê/(n− p) is unbiased estimate of variance of the error term; and

λ∗2i = ê[σ̂2
ε (1−wii)]−1/2 is the studentised displacement e∗i (Türkan & Toktamis,

2013).

The measure can also track a relative outlying tendency of each subject com-

pared to the rest (Türkan & Toktamis, 2013). Peña (2005) demonstrated that the

measure has asymptotic normal distribution, with capability to detect a group of

high leverage similar outliers, a feature that Cook’s statistic falls short of, also

observed by (Türkan & Toktamis, 2013). In addition, the measure was proven

to be handy in detecting model heterogeneity in large high-dimensional datasets

(Peña, 2005). The cutoff proposed by Peña (2005) for outlying observations is:

|ai−median(ai)| ≥ 4.5MAD(ai), where MAD(ai) = median[|ai−median(ai)|],

i.e. Median of Absolute Deviations from sample median.

For the Cox univariate model (2.11), leverage of i-th subject for the covariate

X at time ti is a distance between the subject’s covariate value Xi and its weighted

average X̄ at time ti, given as a component in the score function (2.25):

wii =Xi− X̄(β̂, ti). (2.52)
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Large values of the leverage (2.52) indicate that a subject exerts considerable in-

fluence on the fitted hazard ĥ(ti). The general influence assessment for regression

coefficients estimators β̂ in Cox univariate model is done by the “deleted observa-

tions” method, a procedure involving computing β̂ from complete data and then

β̂(i) from subset of the data following elimination of subject i (Nguyen & Rocke,

2002; Cleves et al., 2010; Wilson, 2013).

Then, the influence of i-th subject on β̂ is measured by the statistic called

Difference in Beta Standardised (DFBetas), also referred to asDelta−beta, which

captures the change in the value of the coefficient β̂. The DFBetas is given by:

DFBetasi =
β̂i− β̂(i)

se(β̂(i))
. (2.53)

The large values of DFBetasi are indicative of influence of the subject i on the

estimate β̂.

The process for computing DFBetas (2.53) is however tedious, as it involves

re-fitting the model (2.11) to the data n+ 1 times. This is a major setback of

the method (2.53) (Nguyen & Rocke, 2002; Cleves et al., 2010; Wilson, 2013). An

alternative and efficient measure, called Score residual is used for the univariate

Cox model (2.11) (Therneau et al., 1990; Wei & Su, 1999). This technique is based

on the fact that mean X̄ of a covariate changes over time for the model (2.11), as

individuals leave the risk set. The leverage (2.52) therefore, takes the form that

integrates out the time-effect (Therneau et al., 1990; Wilson, 2013), as:

wii(β̂, t) =
∫ ∞

0
[Xi(t)− X̄(β̂, t)]dδi(t)

=
∫ ∞

0
[Xi(t)− X̄k(β̂, t)]dmi(t),

(2.54)

where mi(.) is a martingale residual for the i-th subject. The transformed leverage

(2.54) is the Score residual. It measures the contribution of subject i in the risk
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set to the score function for the covariate X.

Since the score function estimates one parameter at a time and treats others

as constants, there is possibility of setting up a vector of score functions and hence

score residuals wii(β̂, t) = (wi1(β̂, t), ...,wip(β̂, t))
T (Nguyen & Rocke, 2002; Wilson,

2013). The estimation of DFbetas (2.52) using score residual (2.54) is thus done by

multiplying the inverse of variance-covariance matrix of the parameter estimates

I(β̂)−1 with the vector of score residuals (Therneau et al., 1990) as:

DFbetasi = (β̂i− β̂(i))/se(β̂(i))

≈ I(β̂)−1(wi1(β̂, t), ...,wip(β̂, t))
T .

(2.55)

When the Cox model is correct, plots of score residual (2.55) against values of the

covariate Xi will fluctuate around zero and any systematic deviations will suggest

lack-of-fit for the independent variableX. This will at the same time spot influence

of subjects on the parameter estimate (Therneau et al., 1990). Figure 2.6 is the

DFBetas plots for the variables age and prio in the Cox recidivism model (2.13).

It shows that most subjects did not have influence on both age and prio variables,

since the DFBetas plots concentrated around the zero line. Although few subjects

had their points away from the zero line, their values were very small, indicating

negligible influence on regression coefficients.
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Figure 2.6: Index plots of DFbetas on age and prio for Cox regression for re-arrest
data. Source: (Fox, 2002)

Alternative influence technique for the Cox model was studied by Cain & Lange

(1984). They engaged concepts of influence curve from Samuels (1978) and Hampel

(1974) to develop an approximation to change in parameter estimate β̂− β̂(i) using

first-order Taylor series expansion, by taking the estimator β̂ as a function of

individual weight $i, i.e. β̂($i). Hence, an approximation to β̂− β̂(i) following

removal of i-th subject in the model is given by:

β̂− β̂(i) ≈ ∂β̂/∂$i = (−∂Uβ/∂β̂)−1∂Uβ/∂$i, (2.56)

where Uβ is the score vector of the model, and$i the subject’s weight taking values

of 1 for all subjects in the model and 0 for the removed subject. The influence of

a subject is assessed graphically, by plotting the measure against ranked survival

time (Cain & Lange, 1984).
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The work reviewed in this section has shown that methods on subjects’ influence

for linear, linear mixed, and univariate Cox models are based on studying leverage

and outlier statistics of the subjects. Then, influence statistics are constructed as

a product of the two quantities. For example, the DFFITS and Cook’s distance for

linear models are products of leverage statistics and studentized residuals, while

DFBetas for univariate Cox survival model is a product of leverage and inverse

covariance matrix of parameter estimates. The current work has exploited such

approaches in the clustered survival model to develop group influence measure for

this model.

2.5.1 Influence diagnostics in mixed-effects models

For the linear mixed-effects model (2.2), cluster-deletion diagnostics are derived

from partitioned regression matrices and vectors by clusters. Once a cluster is

removed from the data, the updated parameter estimators are solved from the

data that remain (Xiang et al., 2002; Zewotir, 2008). These help in computing

measures for estimating contribution of the dropped cluster to the model. To

illustrate these partitions, the linear mixed-effects model (2.2) is re-specified in

stacked form as below, where the horizontal dotted lines indicate the demarcations
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between clusters:



Y11

Y21

...

Yn11

. . . . . .

Y12

Y22

...

Yn22

. . . . . .

...

. . . . . .

Y1M

Y2M

...

YnMM



=



1 X111 X112 · · · X11p

1 X211 X212 · · · X21p

...

1 Xn111 Xn112 · · · Xn11p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 X121 X122 · · · X12p

1 X221 X222 · · · X22p

...

1 Xn221 Xn222 · · · Xn22p

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 X1M1 X1M2 · · · X1Mp

1 X2M1 X2M2 · · · X2Mp

...

1 XnMM1 XnMM2 · · · XnMMp



.



β0

β1

...

βp

. .

β0

β1

...

βp

. .

...

. .

β0

β1

...

βp



+



1 Z111 Z112 · · · Z11q1

1 Z211 Z212 · · · Z21q1

...

1 Zn111 Zn112 · · · Zn11q1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Z121 Z122 · · · Z12q2

1 Z221 Z222 · · · Z22q2

...

1 Zn221 Zn222 · · · Zn22q2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Z1M1 Z1M2 · · · Z1MqM

1 Z2M1 Z2M2 · · · Z2MqM

...

1 ZnMM1 ZnMM2 · · · ZnMMqM



.



b11

b21

...

bq1

. . . .

b12

b22

...

bq2

. . . .

...

. . . .

b1M

b2M
...

bqM



+



ε11

ε21

...

εn11

. . . . . .

ε12

ε22

...

εn22

. . . . . .

...

. . . . . .

ε1M

ε2M
...

εnMM



.

(2.57)

where j = 1,2, ...,M clusters; i = 1,2, ...,nj subjects in cluster j; p is the number

of fixed covariates, with β = (β0β1...βp)
T the vector of fixed parameters; qj is the

number of covariates with random effects, with bqj = (b1jb2j ...bqj)
T is vector of

random effects; Yij is the response value for subject i in cluster j; Xij is the value

of observed fixed covariate for subject i in cluster j; Zij is the observed value of co-

variate with random effect for subject i in cluster j; and εij is the unknown error for

subject i in cluster j. The probability distributions for the error term, ε and ran-

dom effect b as well as all other model assumptions are as provided in model (2.2).

The partitioned matrices and vectors in model (2.57) can also be expressed

as: y = (yT1 ,yT2 , ...,yTm)T , i.e. nj × 1 component vectors yj corresponding to the

j-th cluster; X = (XT
1 ,XT

2 , ...,XT
m)T , i.e. nj × p component matrices Xj , and

Z = (ZT1 ,ZT2 , ...,ZTm)T , nj×q component matrices Zj (Xiang et al., 2002; Zewotir,

2008). If cluster j is removed from the dataset, the entire design matrix X can

be re-written as a set of two design matrices, that is, X = (XT
j ,XT

(j))
T compris-
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ing design matrix XT
(j) without j-th cluster, and design matrix Xj for covariates

data in cluster j. The same applies to all other relevant matrices and vectors, for

example ê = (êTj , ê
T
(j))

T (Xiang et al., 2002). From the partitioned matrices, such

as X = (XT
j ,XT

(j))
T , one can note that the log-likelihood function l(j)(β̂(j)) for β

for the model on reduced sample is the function of both full data and the data

for dropped cluster j. For illustration, one can think of the log-likelihood function

l(j)(β̂) as the difference of the log-likelihood functions from the full data and the

data from cluster j, i.e. l(j)(β̂) = l(β̂)− lj(β̂). This means that the log-likelihood

l(j) for β(j) can provide an estimate of impact of the dropped cluster j in the model.

A number of techniques exist for estimating the parameter displacement β̂− β̂(j)

when cluster j is removed from analysis. One method that is used is the first-order

Taylor series expansion of the score function of conditional log-likelihood function

for reduced data Uβ̂(j)(.) evaluated at β̂. The updated estimator β̂(j) is obtained

by solving for β̂(j) in the first-order Taylor series expansion of the score function

when it is equated to zero, see (Pregibon, 1981; Xiang et al., 2002). A first-order

Taylor- series expansion of any univariate function f(X) around a point X = α

is a linear approximation of the value of the polynomial f(X) or its gradient

at point α, given by: f(X) = f(α) + d
dX f(α)(X −α). Since gradient of a curve

f(X) around a point α is an instantaneous change of the curve with respect of

the variable X, the first-order Taylor series expansion concept is applied on the

score function from the conditional log-likelihood function l(j)(β̂(j)) to estimate the

updated formula of the regression parameter resulting from removing a subject or

cluster of subjects. The conditional log-likelihood function l(j)(β̂(j)) for reduced

data for linear mixed-effects model (2.2) is given by:

l(j)(β(j)|y(j),X(j),b) =−n−nj
2

log(2π)− 1

2
log|G(j)|−

1

2
(y(j)−X(j)β̂(j))

TG−1
(j)(y(j)−X(j)β̂(j)).

(2.58)

Then, the first-order Taylor series expansion of the score function obtained
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from the conditional log-likelihood function (2.58), evaluated at β̂ and treating

G(j) as nuisance parameter (Xiang et al., 2002), is given by:

Uβ̂(j)
(β̂(j)) =

∂l(j)(β̂)

∂β̂(j)

+
∂2l(j)(β̂)

∂β̂T(j)∂β̂(j)

(β̂− β̂(j))

= XT
(j)G

−1
(j)(y(j)−X(j)β̂(j))−XT

(j)G
−1
(j)X(j)(β̂− β̂(j)).

(2.59)

Therefore, the updated parameter estimator β̂(j) is approximated by equating the

equation (2.59) to zero and solve for β̂(j) as follows:

XT
(j)G

−1
(j)X(j)(β̂− β̂(j)) = XT

(j)G
−1
(j)(y(j)−X(j)β̂(j))

β̂− β̂(j) = (XT
(j)G

−1
(j)X(j))

−1XT
(j)G

−1
(j)(y(j)−X(j)β̂(j))

∴ β̂(j) = β̂− (XT
(j)G

−1
(j)X(j))

−1XT
(j)G

−1
(j)(y(j)−X(j)β̂(j))

= β̂− (XT
(j)G

−1
(j)X(j))

−1XT
(j)G

−1
(j)ê(j).

(2.60)

Once the updating formulae are solved, the influence measures for clusters are

developed from the usual quantities for examining influence defined in previous

section, such as Cook’s distance, DFBetas, and DFFits (Xiang et al., 2002; Zewotir,

2008). For example, the generalised Cook’s distance for β̂ for data without j-th

cluster in linear mixed-effects model (Xiang et al., 2002; Zewotir, 2008) can be

estimated as:

CDj(β̂) =
(β̂− β̂(j))

T (XT
(j)G

−1
(j)X(j))(β̂− β̂(j))

pσ̂2
e

=

(
(XT

(j)G
−1
(j)X(j))

−1XT
(j)G

−1
(j)ê(j)

)T
(XT

(j)G
−1
(j)X(j))

(
(XT

(j)G
−1
(j)X(j))

−1XT
(j)G

−1
(j)ê(j)

)
pσ̂2

e

=
êT(j)G−1

(j)X(j)(XT
(j)G

−1
(j)X(j))

−1(XT
(j)G

−1
(j)X(j))(XT

(j)G
−1
(j)X(j))

−1XT
(j)G

−1
(j)ê(j)

pσ̂2
e

=
êT(j)G−1

(j)X(j)(XT
(j)G

−1
(j)X(j))

−1XT
(j)G

−1
(j)ê(j)

pσ̂2
e

=
êT(j)G−1

(j)Q1(j)ê(j)

pσ̂2
e

,

(2.61)
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where Q1(j) = X(j)(XT
(j)G

−1
(j)X(j))

−1XT
(j)G

−1
(j) is leverage matrix for fixed effects

solved in equation (2.46) but without cluster j. Large values of CDj(β̂) in equa-

tion (2.61) show that subjects in cluster j are jointly influential on β̂ (Zewotir,

2008).

A similar approach can be used to find the updating formulae for the other

model parameter estimators, such as estimated variance of the error term σ̂2
ε . The

same results can also be found using direct application of properties of multivariate

normal distribution on reduced data (Zewotir & Galpin, 2007). As for the random

effects b, the linear mixed-effects model (2.2) assumes that these are mutually

independent across clusters, hence deleting one cluster will not affect the estimator

b̂ for the remaining clusters (Xiang et al., 2002). This is demonstrated below,

using the method of first-order Taylor-series expansion on score function obtained

from the complete joint log-likelihood function (2.19). The first-order Taylor-series

expansion of score function for b̂(j) resulting from the conditional log-likelihood

l(j)(b̂(j)) for reduced data, evaluated at b̂, is given by:

Ub̂(j)
(b̂(j)) =

∂l(j)(b̂)

∂b̂(j)

+
∂2l(j)(b̂)

∂b̂T(j)∂b̂(j)

(b̂− b̂(j))

= ZT(j)(σ
2
ε(j)I(j))

−1(y(j)−X(j)β̂(j))−
[
ZT(j)(σ

2
ε(j)I(j))

−1Z(j) +D−1
(j)

]
b̂(j)

−
[
ZT(j)(σ

2
ε(j)I(j))

−1Z(j) +D−1
(j)

]
(b̂− b̂(j)).

(2.62)

Therefore, the updated formula b̂(j) for b̂ will be found by equating the quan-
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tity (2.62) to zero and solving for b̂(j) as follows:

[
ZT(j)(σ

2
ε(j)I(j))

−1Z(j) +D−1
(j)

]
b̂(j) +

[
ZT(j)(σ

2
ε(j)I(j))

−1Z(j) +D−1
(j)

]
(b̂− b̂(j))

= ZT(j)(σ
2
ε(j)I(j))

−1(y(j)−X(j)β̂(j))

b̂(j) + (b̂− b̂(j)) =
[
ZT(j)(σ

2
ε(j)I(j))

−1Z(j) +D−1
(j)

]−1
ZT(j)(σ

2
ε(j)I(j))

−1(y(j)−X(j)β̂(j))

∴ b̂ = D(j)ZT(j)G
−1
(j)(y(j)−X(j)β̂(j))

b̂ = b̂(j).

(2.63)

This result shows that the updated formula b̂(j) for b̂, upon dropping cluster

j, is just the same formula b̂ obtained when using all available clusters. This

implies that there is no change in the estimator for random effects when a cluster

is dropped from analysis. This means that the prediction of random effects b for

each of the available clusters is insensitive to any other cluster that might have

been dropped from the dataset. Such is the case due to independence of the ran-

dom effects across clusters (Xiang et al., 2002).

A version of Pena’s statistic for influence of individual subjects on the linear

mixed-effects model (2.2) follows naturally from the definition (2.51) (Turkan &

Toktamis, 2012). The Pena’s measure for linear mixed-effects model (2.2) is thus

given by:

ai =
1

(p+ q)σ̂2
ε
||ŷ− ŷ(i)||2

=
λ∗2i (1− rii)
(p+ q)(rii)

=
e∗2i (1− rii)

(p+ q)σ̂2
ε (rii)

2

=
(1− rii)2e∗Ti e∗i

(p+ q)σ̂2
ε r

2
ii(1− rii)

,

(2.64)

where 1−rii is i-th subject leverage defined in equation (2.22); ê∗i = riiYi is i-th sub-

ject’s displacement of Ŷi due to removal of subject i from analysis; λ∗i = ê∗i /σ̂ε
√
rii
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is the Studentised displacement. Large values of the measure (2.64) will show

subjects that have influence on the fitted value. By revisiting various cutoffs, the

reliability of Pena’s residual in tracking outliers is also reported in the work of Das

& Gogoi (2015). The implementation packages for group or individual subjects

influence methods for linear mixed-effects model are available in literature. For

example, Schabenberger (2005) uses the SAS program MIXED to compute the mul-

tivariate DFFITS statistic corresponding to removal of a group of observations

from the model. While Loy & Hofmann (2014) use the R package HLMdiag to

implement the diagnostics.

Throughout this review, it is clear that the residuals for the linear mixed-

effects model (2.2) are direct extensions of those for generalised linear model (2.1).

This reflects the relationship of the structures and estimation procedures for both

models. The review also shows that influence and outlier assessment methods for

linear and linear mixed-effects model are well-studied. There is just little work

done on diagnostics for non-linear mixed models. In the next section, the current

application of model diagnostics in clustered survival data is reviewed.

2.6 Application to clustered survival data in Malawi

Standard outlier and influence statistics for survival data were implemented on

child survival, a major indicator of health and development of a country, collected

as part of 2015-16 Malawi Demographic and Health Survey (MDHS) data. Malawi

is a landlocked country in south-eastern Africa in the Great Rift Valley and lies

on the western shores of Lake Malawi. The country is bordering Tanzania to the

north, Zambia to the west, and Mozambique to the east, south, and west. The

population of Malawi was just over 17 million in 2018, representing intercensal

growth rate of 2.9% per annum between the previous housing and population cen-

sus of 2008 and the recent one of 2018 (Malawi National Statistical Office (NSO),
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2019). Using this estimated growth rate, the population is expected to double by

2042. Over 80% of the Malawi’s population is rural, and with 64% under the age

of 15 years, thus the country has a young population.

Administratively, Malawi is divided into the Northern, Central and Southern

regions, which are further divided into twenty-eight districts, namely: Balaka,

Blantyre, Chikwawa, Chiradzulu, Machinga, Mangochi, Mulanje, Mwanza, Neno,

Nsanje, Phalombe, Thyolo, and Zomba in the Southern region; Dedza, Dowa, Ka-

sungu, Nkhotakota, Ntcheu, Ntchisi, Lilongwe, Mchinji, and Salima in the Central

region; and Chitipa, Karonga, Likoma, Mzimba, Nkhatabay, and Rumphi in the

Northern region. Four of the districts, namely: Blantyre, Lilongwe, Mzimba, and

Zomba contain the four major cities, which themselves are further divided into ru-

ral and city locations. Figure A.1 in the Appendix shows the map of Malawi with

the 28 districts and the four cities. The economy of Malawi is largely dependent

on agriculture, fishing and forestry and the country’s GDP is one of the lowest in

sub-Saharan Africa. The very low GDP places pressure on the delivery of health

care system, which is based on primary health care (PHC), largely operated within

the 28 districts and 4 cities (Makaula et al., 2019).

The 2015-16 MDHS survey, which was the fifth since 1992, aimed to provide

data for monitoring the population and health status of the country. The survey

was held from 19 October 2015 to 18 February 2016 and collected child survival

data from the women respondents and caregivers who provided birth histories. For

the purpose of this work, mortality data on 17,286 children, who were born within

the last 5 years of the survey, were analysed. The survey employed a two-stage

stratified sampling design, with emuneration areas as primarily sampling units and

households as secondary sampling units, having all women aged 15-49 years being

eligible to participate in the survey. Further information on the 2015-16 MDHS

can be found in the survey report (Malawi National Statistical Office (NSO) &
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ICF, 2017), and the information about the DHS progam and data access are avail-

able at www.DHSprogram.com.

In order to balance between sufficient clusters and number of children per

cluster, the rural and urban areas in each district were taken as separate groupings

or clusters. Thus, we used the resulting 52 subdistricts (clusters) on which to

analyze the child survival data from the 2015-16 MDHS. Child birth order and sex

were used in the analysis of child survival because previous studies had indicated

that these are some of the well-known predictors of child survival (Manda, 2001).

The survival model was fitted to the dataset and cluster outlier or influence was

assessed for each sub-district using available methods.

2.6.1 Using random effects residuals from frailty model

One of the statistics that are used for group outlier examination for clustered data

is the random effect residual discussed in Section 2.4.1. A Cox frailty model was

fitted to the 2015-16 MDHS data, with event of interest being death of a child from

any cause before 60 months of age. The event-time was age in months as at death

or censoring point. The ages-at-death that were recorded as zero months were

transformed into random Uniform(0,1) values to reflect proportions of month-

days lived before death or censoring by the corresponding children. The data had

about 5% children who experienced the event of death. Administrative censoring

was used, and children who were still alive or had survived up to 60 months were

censored. The covariates were birth order and sex of the child. The fitted model

was as follows:

hij(age) = h0(age)exp(−0.185×Female−0.214×Birthorder

+ 0.0233×Birthordersquared+ subdistrict).

(2.65)

The model results showed that female children had significantly lower risk of

death than the male children (p-value < 0.0096). While higher birth order was
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associated with reduced risk of death (p-value < 0.0001) and birth order squared

with increased risk. The relationship between birth order and logarithm of hazard

of death was therefore quadratic. The results are consistent with previous findings

(Manda, 1999). The variance of sub-district random-effects was 0.0419 and it was

significantly different from zero (p-value < 0.001). The scatter plots in Figure

2.7 for estimates of random effects showed that Neno urban was an outlier to

the survival mixed model based on random effects estimates. These results were

reserved for comparison when applying the derived group outlier statistic to the

same data.

Figure 2.7: Sub-district level random effect residual from fitting a frailty Cox
hazard regression model to Malawi child survival data, 2015-16 MDHS. Source:
Researcher

2.6.2 Using group summary statistics of residuals from

univariate Cox model

The other method for examining group outlier and influence for clustered survival

data involves fitting a univariate Cox model (2.8) to the data and compute group

summary statistics of the residuals such as deviance and DFBetas (Jennings, 1986;

Langford & Lewis, 1998; Duchateau & Janssen, 2005; Legrand et al., 2006). The

univariate Cox model was fitted to the 2015-16 MDHS data using the same event
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of interest and covariates as in previous section. The fitted model was:

hij(age) = h0(age)exp(−0.182×Female−0.212×Birthorder

+ 0.0234×Birthordersquared).
(2.66)

As with frailty model (2.65), effects of female gender (p−value= 0.011), birth

order (p− value < 0.0001), and birth order squared (p− value < 0.0001) on child

risk to death were also significant. The only difference was that the sizes of the

fixed effects were slightly larger in the univariate Cox PH model comapred to the

multivariate Cox PH model. The subdistrict unweighted averages of the model’s

deviance residual and DFBetas were computed. The results in Figure 2.8 (a) show

that Chikwawa rural and Balaka urban were under-five mortality outliers based on

a cutoff of 2.5 for the cluster average deviance residual from the univariate survival

model. While, the average DFBetas in Figure 2.8 (b) indicate that Chikwawa

urban and Balaka rural were marginally influential on the effect of female gender

on child survival. The results were also reserved for comparison when applying,

on the same dataset, the proposed group outlier and influence statistics developed

in this study.

(a) Cluster-wise average deviance residuals from
fitting a univariate Cox hazard regression model
to Malawi child survival data, 2015-16 MDHS.

(b) Cluster-wise average DFBetas for influence
of female effect on log hazard in univariate Cox
model applied on 2015-16 MDHS.

Figure 2.8: Plots of average deviance and dfbetas residuals per cluster upon fitting
a univariate Cox model to 2015-16 MDHS. Source: Researcher
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Chapter 3

Cluster Outliers for Survival

Mixed Model

This chapter presents a method for detecting outlying clusters in grouped survival

data. The chapter begins by defining the important statistics for group outlier

analysis and later presents the suggested measure.

3.1 Useful definitions for studying group outliers

The review in Chapter 2 revealed that the outlier concept is to do with subject(s)

not conforming to the distributional assumption of the fitted model (Langford &

Lewis, 1998; Sarkar et al., 2011; Aguinis et al., 2013; Z. Zhang, 2016). This is

now examined using post-estimation statistics that can capture the distribution of

the model’s fitted value or residual. One such statistic that is used in generalised

linear models is the residual ê in equation (2.8) given by:

ê = y− ŷ

= y−X(XTX)−1XTy

= (In−W)y,

(3.1)
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where W = X(XTX)−1XT is the hat matrix, or its scaled version in equation

(2.10) given by:

λ= [var(ê)]−1/2ê

=
[
(1−wii)

T var(y)(1−wii)
]−1/2

ê

= σ̂−1
ε (1−wii)

−1/2ê,

(3.2)

where wii is a vector consisting of diagonal elements ofW (Loy & Hofmann, 2014).

The primary purpose of the residual (3.1) is to assess linearity and additivity

assumptions of the general linear model (2.1) (Yang, 2012). However, it is also

used to assess outliers due to the fact that it is an estimate of the model’s error

term, whose probability distribution is assumed to be normal with mean zero

and constant variance. So, subjects that are in the periphery of the scatter plot

of estimated errors êi against individual indexes i are considered outliers to the

model. In linear mixed-effects model (2.2), the residual ê given in equation (2.23)

is:

ê = y−Xβ̂−Zb̂. (3.3)

This residual also serves to examine linearity and additivity assumptions of

the linear mixed-effects model (2.2) as in generalised linear model (2.1) (Nobre &

Singer, 2011; Turkan & Toktamis, 2012; Loy & Hofmann, 2014). For the univariate

Cox PH model (2.11), a residual is defined as in equation (2.12):

m(ti) =N(ti)−
∫ ti

0
Yi(t)exp(X

T
i (t)β̂)dĤ0(t), (3.4)

where N(ti) is a counting process for the i-th subject indicating number of ob-

served events experienced over time ti, Yi(t) is a 0-1 process indicating whether

the i-th subject is at risk at time ti and the Cox model restricts that Yi(t) = 1

until the first event or censoring and 0 thereafter, β̂ regression coefficients, XT
i (t)

p-dimensional covariate processes, and Ĥ0(t) the baseline cumulative hazard func-
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tion that is unspecified (Therneau et al., 1990).

The residual is called martingale because of its relation with a counting process.

It is interpreted as the difference over [0, ti] in the observed and expected number of

events at each time ti given the model, or as excess events (Therneau et al., 1990).

Thus, positive values imply individuals failed earlier than expected and negative

values means they survived longer than estimated. Just as in linear models, the

residual (3.4) has also the properties of summing to zero, having an average of

zero and with no correlation between any two of its values at any given time

point (Therneau et al., 1990). For this reason, the residual (3.4) is also used to

assess the linearity and additivity assumptions in survival models. When plotted

against each covariate X, the values are expected to average around zero where a

covariate has correct linear specification. Once consideration is on the Cox model

with time-independent covariates, the martingale residual (3.4) reduces to:

m(ti) = δi− Ĥ0(t)exp(XT
i β̂), (3.5)

where δi is the final status of subject i and ti the observation time for subject i.

The natural extension of martingale residual (3.5) to clustered survival model

(1.1) is defined as:
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m(tij) = δij− Ĥ0(t)exp(XT
ij β̂+ZTij b̂j)

⇒



m(t11)

...

m(tn11)

m(t12)

...

m(tn22)

...

m(t1M )

...

m(tnMM )



=



δ11− Ĥ0(t)exp(XT
11β̂+ZT11b̂1)

...

δn11− Ĥ0(t)exp(XT
n11β̂+ZTn11b̂1)

δ12− Ĥ0(t)exp(XT
12β̂+ZT12b̂2)

...

δn22− Ĥ0(t)exp(XT
n22β̂+ZTn22b̂2)

...

δ1M − Ĥ0(t)exp(XT
1M β̂+ZT1M b̂M )

...

δnMM − Ĥ0(t)exp(XT
nMM β̂+ZTnMM b̂M )



.
(3.6)

The properties of the residual (3.5) may not apply to the extended version (3.6)

due to correlation of subjects resulting from shared random effect in a cluster.

In both univariate and multivariate cases, the martingale residual is negatively-

skewed because δi has values 0 or 1 while Ĥ0(t)exp(XT
i β̂) has values in the interval

[0,∞). Due to this skewed distribution, the martingale statistics (3.5) and (3.6)

may not ably serve to examine outliers.

The review in Section 2.4 showed that apart from Studentised residual (3.2), a

deviance residual is also used for outlier assessments in generalised linear models.

As indicated in the stated section, the deviance residual measures the disagreement

between an element of the log-likelihood of the fitted model and the corresponding

element of the log-likelihood that would result if each point were fitted exactly

(Sarkar et al., 2011). For example, a deviance statistic for logistic regression

presented as equation (2.35) is given by:

di = sign(Yi− θ̂(Xi))
[
−2(Yilogθ̂(Xi)) + (1−Yi)log(1− θ̂(Xi))

] 1
2 (3.7)
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where θ̂(Xi) = exp(XT β̂)

1+exp(XT β̂)
is the fitted conditional probability of success given co-

variate X, Yi is binary response taking values 0 or 1, and ‘sign’ the sign of raw

residual Yi− θ̂(Xi), plus or minus. The deviance residual (3.7) is expected to be

symmetric around the mean zero, hence marginal points in its distribution are

regarded as outliers.

A similar version of deviance residual was suggested by Therneau et al. (1990)

for Cox PH model, it is a transformation of a martingale residual given in equation

(2.36) as:

di = sgn(m(ti)) [−2(m(ti) + δilog(δi−m(ti))]
1
2 . (3.8)

From this version of the deviance residual, an extension for the clustered survival

model (1.1) is defined in stacked vector form as:

dij = sgn(m(tij)) [−2(m(tij) + δijlog(δij−m(tij))]
1
2

⇒



d11

...

dn11

d12

...

dn22

...

d1M

...

dnMM



=



sgn(m(t11))[−2(m(t11) + δ11log(δ11−m(t11)))]1/2

...

sgn(m(tn11))[−2(m(tn11) + δn11log(δn11−m(tn11)))]1/2

sgn(m(t12))[−2(m(t12) + δ12log(δ12−m(t12)))]1/2

...

sgn(m(tn22))[−2(m(tn22) + δn22log(δn22−m(tn22)))]1/2

...

sgn(m(t1M ))[−2(m(t1M ) + δ1M log(δ1M −m(t1M )))]1/2

...

sgn(m(tnMM ))[−2(m(tnMM ) + δnMM log(δnMM −m(tnMM )))]1/2



.

(3.9)

Once again, the deviance residual (3.9) does not have same properties as its

counterpart (3.8) for univariate Cox model because subjects in a cluster are cor-

related. Hence, assessment of individual outliers within a cluster for the mixed
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survival model is not a straightforward task. However, the values of the residual

(3.9) are uncorrelated across clusters. The concern of this work was on group out-

lier analysis. By utilising the independence of values of the measure (3.9) across

clusters, a statistic for assessing group outliers in multivariate Cox model (1.1) is

developed and presented in the next section.

3.2 Proposed outlier statistic for multivariate sur-

vival data

There are a number of techniques that are used to assess group outliers in mixed

models. One way is through graphically assessing the homogeneity of the distribu-

tion of standardised residuals of single observations in a linear mixed-effects model

plotted against each cluster (Langford & Lewis, 1998), given by:

λij = ê/stdev(ê), (3.10)

where stdev(ê) is Studentized residual of a subject. The clusters with highly

skewed Studentized residuals compared to others, are considered outliers to the

linear mixed model (Langford & Lewis, 1998).

A similar method is the re-weighted minimum covariance determinant (RMCD)

(Cerioli, 2010), given by:

d2
i(RMCD) = (Yi− µ̂(RMCD))

T Σ̂−1
(RMCD)(Yi− µ̂(RMCD)) (3.11)

where µ̂(RMCD) = 1
m

∑
i∈YMCD

$iYi is re-weighted MCD estimate of location; Σ̂ =

k(RMCD)(m,n,v)

m−1 ×∑i∈YMCD
$i(Yi− µ̂(RMCD))

T (Yi− µ̂(RMCD)) is re-weighted MCD

estimate of scatter; m =
∑
i∈YMCD

$i; v dimension of covariance matrix Σ; and

k(RMCD)(m,n,v) proportionality constant to control for bias. This method tests

whether or not a group of subjects belongs to a subsample of homogeneous units
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with constant variability, referred to as ’good’ observations. The null hypothesis

is H0i : Yi ∼ N(µ,Σ) and d∗2(RMCD) is test statistic. When H0i is not rejected, it

means the subsample Yi is a ‘good’ observation, otherwise the group of subjects

being assessed is deemed outlier (Cerioli, 2010).

The overalaps of scatter plots of residuals from different clusters is a major

setback for application of method (3.10), as one may not reliably conclude on out-

lierness of a cluster when plots of its standardised residuals overlap with those of

another cluster. Similarly, application of method (3.11) on regrouped subsamples

of data of size greater than half of the total sample size implies that the technique

ignores natural groups in the data, some of which may have lower sample sizes

than half of the total sample. Outlier detection methods that can be applied on

clusters of data are crucial in studying how behaviours of subjects in the clus-

ters affect the modelling. Nonetheless, both methods (3.10) and (3.11) transform

some known single observations residuals into distance quantity that can examine

grouped outliers to the mixed-effects model. Schall & Dunne (1988) demonstrated

that when a linear model is fitted to any residual ê that is normally distributed,

the model’s diagnostic assessments can reveal outliers to the main model with

response y. The deviance residual (3.9) is one of the diagnostic statistic that is

symmetric about zero and has asymptotic mean of zero (Therneau et al., 1990),

so this study suggests an outlier statistic for model (1.1) by manipulating further

the extended deviance residual (3.9).

Following from the ideas developed for linear mixed-effects models, this study

proposes a statistic computed from a ratio of within-cluster variance of deviance

residual (3.9) to between-cluster variance for examining outlying clusters to model

(1.1). If observations in model (1.1) were independent, the total variation of dlj

would have been the sum of within-cluster variation and between-cluster variation

given by:
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∑M
i=1

∑ni
j=1 (dij− ¯̄d)2

n−1
=

∑M
i=1

∑ni
j=1 (dij− d̄i)2

n−M
+

∑M
i=1ni(d̄i− ¯̄d)2

M −1
, (3.12)

where ¯̄d=

∑M
i=1

∑ni
j=1 dij

n is the grand mean of the deviance residual dij ; d̄i =

∑ni
j=1 dij

ni

is the mean of dij for any fixed i; n = n1 +n2 + ...+nM is number of subjects in

entire dataset.

However, the correlations of observations in model (1.1) will yield biased esti-

mate of within-cluster variance of dij in equation (3.12) for entire dataset. Since

the clusters are independent and assuming conditional independence of observa-

tions in each cluster, the respective within-cluster variances of residual dij will be

unbiased estimators of variance of dij in each cluster. These will consequently mea-

sure how distant the survival times of subjects in each cluster are from the fitted

survival curve. Therefore, the proposed group outlier statistic for model (1.1) is

anM×1 vector, denoted ki, which is the ratio of within-cluster to between-cluster

variances of dil given by:

k =
1

L
(k1, ...,kM )T

=
1

L

(∑n1
i=1 (d1j− d̄1)2

n1−1
, ...,

∑nM
i=1 (dMj− d̄M )2

nM −1

)T
,

(3.13)

where L=

∑M
j=1nj(d̄j− ¯̄d)2

M−1 is between-cluster variance of dij .

Since the fitted survival curve is expected to pass through all available clusters

of observations, the proposed statistic (3.13) will separate homogeneous clusters

from the outlying clusters in view of the fitted survival mixed model (Rousseeuw

& Hubert, 2011). The small values of kj will correspond to well-fitted clusters of

observations, that is, those units that closely span the fitted survival curve. While

large values of (3.13) will correspond to clusters whose observations have been
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poorly fitted by model (1.1), and hence outliers.

We explored properties of kj = f(Kj ,L) =Kj/L, whereKj is the within-cluster

variance component of (3.13). Clearly, kj ∈ [0,∞) and it is a non-linear function,

since Kj and L, being variances, have support [0,∞). A common method to

estimate expected value of ratio estimator is through second order Taylor series

expansion about µ= (µkj
,µl) (Van Kempen & Van Vliet, 2000). Thus,

E(kj) = E(Kj/L)

= E(f(Kj ,L))

≈ E[f(µ) +f
′
kj

(µ)(kj−µkj
) +f

′
l (µ)(l−µl) +

1

2
{f
′′
kjkj

(µ)(kj−µkj
)2

+ 2f
′′
lkj

(µ)(kj−µkj
)(l−µl) +f

′′
ll(µ)(l−µl)2}]

= f(µ) +
1

2

{
f
′′
kjkj

(µ)V ar(Kj) + 2f
′′
lkj

(µ)Cov(L,Kj) +f
′′
ll(µ)V ar(L)

}
=
µkj

µl
− 1

µ2
l

Cov(Kj ,L) +
µkj

µ3
l

V ar(L),

(3.14)

where f(µ) = µkj
/µl, f

′′
kjkj

(µ) = 0, f ′′lkj
(µ) = −1/(µl)

2, and f
′′
ll(µ) = 2µkj

/(µl)
3,

since f(Kj ,L) = Kj/L and E(Kj/L) = E(f(Kj ,L)). Also, E(kj −µkj
) = E(l−

µl) = 0; V ar(Kj) = E(kj − µkj
)2, and Cov(Kj ,L) = E[(kj − µkj

)(l− µl)]. For

variance of kj , it follows from the equation of mean above and from first order

Taylor series expansion of f(Kj ,L) around µ= (µKj
,µl) that

V ar(kj) = V ar(Kj/L)

= V ar(f(Kj ,L))

= E{[f(Kj ,L)−f(µ)]2}

≈ E
{[
f(µ) +f

′
kj

(µ)(kj−µkj
) +f

′
l (µ)(l−µl)−f(µ)

]2}
= f

′2
kj

(µ)V ar(Kj) + 2f
′
kj

(µ)f
′
l (µ)Cov(Kj ,L) +f

′2
l (µ)V ar(L)

=
1

µ2
l

V ar(Kj)−2
µkj

µ3
l

Cov(Kj ,L) +
µ2
kj

µ4
l

V ar(L).

(3.15)
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These properties and others such as estimates of third and fourth moments

of kj can help in characterising the distribution of kj , which can in turn pro-

vide a basis for formal tests about outliers to model (1.1). Nonetheless, graphical

methods also provide reliable alternative to formal tests of model residuals (Yang,

2012). Searching for a fixed critical point for determining an outlier using a resid-

ual becomes relevant when there are few isolated cases in the dataset (Zewotir &

Galpin, 2007). Where the data has many outlying cases, use of multiple compar-

isons of the residual values relative to one another, and through graphical displays,

is recommended (Zewotir & Galpin, 2007). The graphical methods are known to

provide reliable alternative to formal tests of model residuals (Yang, 2012). For

these reasons, this study engaged graphical assessments were engaged in this study

to analyse outlying clusters to model (1.1). In practice, relative comparisons of

values of a group outlier statistic suffice to isolate outlying groups to mixed mod-

els (Zewotir & Galpin, 2007). Hence, this study applied graphical techniques on

values of the proposed outlier statistic k to assess the outlying clusters in relevant

datasets.

3.3 Simulation study

In order to evaluate performance of the proposed outlier statistic, a simulation

study was carried out. There are many examples in literature for survival-times

data simulation techniques (Bender et al., 2005; M. J. Crowther & Lambert, 2012,

2013; Cho et al., 2009; Moriña & Navarro, 2014; Montez-Rath et al., 2017; Wan,

2017; Brilleman et al., 2018). A shared frailty survival model was assumed in

order to generate survival times T . Two covariates were used, X1 generated from

Bernoulli(0.7) and X2 from N(0,1). The cluster random effects b were generated

from N(0,0.42). The survival time data T were generated from the Exponential(1)

distribution, using the cumulative hazard inversion method (Brilleman et al., 2018)

on the model:
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hij(t|bj ,Xi) = h0(t)exp(β1Xij1 +β2Xij2 + bj) (3.16)

where h0(t) ∼Weibull(0.1,1), i.e. h0(t) = actc−1, with a = 0.1 and c = 1 making

h0(t) = 0.1 a constant; β1 = 0.5 and β2 = 1. The inversion method derived tij

from t∗ij = H−1
ij (−log(S(tij))), where S(tij) ∼ Uniform(0,1) and hence making

Hij(t) =−log(Uniform(0,1))∼ Exponential(1) (Brilleman et al., 2018).

The random censoring variable ∆ was generated from Bernoulli(0.4), giving a

censoring rate of 60%. This rate was chosen because few cluster surveys of vari-

ous populations in Africa have reported an average failure rate of 40%, when the

event-time is death (Manda & Meyer, 2005). Other methods for generating cen-

soring variable are available in literature (Montez-Rath et al., 2017; Wan, 2017).

For instance, administrative censoring, where the study end point is defined and a

censoring variable is created that gets a value of 0 for subjects’ survival times that

cannot be observed beyond that end point and 1 for those that can be observed.

Another example is the traditional censoring where two sets of event-times data

are generated in parallel; survival times and censoring times and the minimum of

the two is picked for study, and the censoring variable gets a 1 if this minimum

is from survival time and 0 when it is from censoring times (Montez-Rath et al.,

2017; Wan, 2017).

The R package simsurv (Moriña & Navarro, 2014; Brilleman et al., 2018) was

used to set up and draw the clustered survival data from the exponential distribu-

tion. Samples of size 10, 20, and 50 clusters each, having 80 and 500 subjects per

cluster were generated. Each case was replicated 100 and 1000 times. This tested

effect of cluster and simulation sizes on performance of the proposed method. A

common approach that is used to evaluate performance of newly proposed diag-

nostic measure is to simulate regular data set based on the model of interest and

introduce various scenarios of aberrant cases so as to check if the diagnostic statis-
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tic can detect these (Zewotir & Galpin, 2006). In that regard, two clusters in each

of the three cases were perturbed so as to have different survival-times. At first,

the survival times of the first two clusters were generated from a model (3.16) with

perturbed random-effects parameter values as b1,2 ∼N(10,2.52),N(15,5.52), while

the parameters of X1 and X2 remained intact. This generated random effects in

clusters 1 and 2 that were outside the 95% confidence range of the expected average

value of zero, i.e. [−0.784,0.784], which was expected to generate survival times T

in cluster 1 or 2 with some degree of outlying. That was done on assumption that

values of random effects will contribute to outlying behaviour of survival times

variable T in a cluster.

Secondly, the survival times in the first two clusters were generated from a

model with (β1 = 1.8,2.7), leaving the other parameters fixed as in model (3.16).

This assessed how β1 influenced outlying tendency of survival times in the first two

clusters. Thirdly, data of the first two clusters were generated with (β2 = 2.0,2.5),

leaving the rest of the parameters fixed. In all other clusters than 1 and 2, data

were generated using parameter values defined along with model (3.16) without

any adjustment to ensure that the outlier measure should only detect cluster 1 or

2 as outlying when applied on the dataset involving all clusters.

Nonetheless, a cluster can have outlying effects on survival times T due to an

interplay of values of fixed- (β1,β2) and random-effects b parameters (Zewotir &

Galpin, 2006). Hence, joint perturbations of fixed- or random-effects were also

performed, i.e. β1 = 1.8,2.7 and b1,2 ∼ N(10,2.52),N(15,5.52), leaving β2 intact.

Then, β2 = 2.0,2.5 and b1,2

simN(10,2.52), b1,2,N(15,5.52), leaving β1 unchanged, likewise β1 = 1.8,2.7 and

β2 = 2.0,2.5, leaving random-effects bj intact. Finally, data were generated with all

the three effects perturbed, i.e. β1 = 1.8,2.7, β2 = 2.0,2.5 and b1,2N(10,2.52),N(15,5.52).
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A decision about the effectiveness of the proposed method in identifying clus-

ter 1 or 2 as outlier was made using proportion, among simulations, of cor-

rect identification of the outlying clusters 1 and 2 by the proposed outlier mea-

sure (3.13) at a given cutoff (Xiang et al., 2002). The cutoff used is k1,2 >

mean [maximum(ki : i= 3,4, ...,M)] or k1,2 <mean [minimum(ki : i= 3,4, ...,M)]

out of 100 or 1000 simulations (Xiang et al., 2002). When a newly proposed

statistical method is for estimating a parameter, performance of the method is

assessed using coverage probability (CP), also called Type I error, which is de-

fined as the proportion of confidence intervals that contains the hypothetical value

of the parameter in a given simulation (Kontopantelis & Reeves, 2012; Trikali-

nos et al., 2013; Montez-Rath et al., 2017). Where a 95% confidence interval is

used, a CP close to 0.95 is desirable, and CP above 0.95 is indicative of inefficient

method, while CP below 0.95 implies the new method is inaccurate (Kontopantelis

& Reeves, 2012; Trikalinos et al., 2013).

In addition, power probability, also known as Type II error, for the parameter

being estimated is used (Kontopantelis & Reeves, 2012). Further, bias or standard-

ized bias is used, this is the difference between the true or simulated parameter

value and its estimate, as a percentage of the estimate’s standard error. Finally,

the mean squared error (MSE) is also used, this is the squared difference between

the true or simulated parameter value and its estimate, averaged over number of

simulations. The bias and MSE close to zero are preferred for a good estimator

(Trikalinos et al., 2013; Montez-Rath et al., 2017).

The following steps summarise the process used to simulate data in R:

Step 1: Set up data frame for j = 10,20,50 clusters, each with nj = 80 and 500,

and n= j×nj ,
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Step 2: SampleX1 fromBinomial(N,1,0.7),X2 fromN(0,1), and bj fromN(0,0.42),

Step 3: Multiply X1, X2 with respective coefficients β1 = 0.5 and β2 = 1,

Step 4: Sample survival times t∗ij from Exponential(1) using model (3.16) and

‘simsurv’ package,

Step 5: Sample δij from Binomial(N,1,0.4),

Step 6: Merge and save the dataset (X1,X2, δij , clusterj , bj , tij),

Step 7: Replicate the data in Steps 1 to 6 by 100 and 1000 simulations,

Step 8: Repeat Steps 1 to 7 with first two clusters having T generated from model

with perturbed parameters as described before.

The clustered survival model (3.16) was fitted to each of the simulated dataset

and the proposed outlier measure was computed for each cluster. The performance

of the proposed statistic was evaluated as per criterion indicated in preceding

paragraphs. The results are presented in the following section. The R codes that

were used are given as appendices.

3.3.1 Simulation results when separate perturbations were

done to β1 or β2 or bj in first two clusters

The plots in Figure 3.1 for selected cases of the simulations indicate that the outlier

statistic detected clusters 1 and 2, as outliers, as per the cutoff criterion given in

previous section, when the perturbations involved fixed- and not random-effects.

The plots of the statistic were out of range in the first two clusters for the case that

involved β1, and they remained consistent with the rest clusters for samples with
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perturbed random effects. The rest of the results on success rates of the proposed

statistic are given in Tables 3.1 and 3.2.

(a) Plots of outlier statistic for a case of data
with perturbed b ∼ (15,5.52) in 2 of 50-clusters
sample, each with 80 subjects and with 100 repli-
cations

(b) Plots of outlier statistic for a case of data
with perturbed β1 = 2.7 in 2 of 50-clusters sam-
ple, each with 500 subjects and with 100 repli-
cations

Figure 3.1: Plots of the proposed outlier statistic when perturbed models were
used in first two clusters. Source: Researcher.

The results in Table 3.1 show that the proposed outlier statistic was effective,

when the perturbations involved fixed and not random effects. When β1 was per-

turbed, the residual correctly identified the affected two clusters a minimum of

0.4% and up to 100% of the simulations. Where the adjustments concerned β2,

the statistic correctly identified the two clusters at least 57% and up to 100% of

the times. Adjusting random effects in the model did not cause the cluster to be

outlier, the success rates of the statistic were all zero.

Further, performance of the statistic improved with cluster sample size and

fixed effect size. In addition, the success rates of statistic converged to the same

values between 100 and 1000 replications, for scenarios with large cluster sample

size. There was a slight drop in the rates at 1000 simulations in cases of low cluster

sizes. The results also show that the outlier statistic performed equally across

different number of clusters per data set, holding constant the cluster sample size

and fixed effect size.
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Table 3.1: Percentage of times per 100 or 1000 simulations in which cluster 1 or 2
was detected as outlier by proposed statistic; a case of separate perturbations to
bj , β1 or β2, under 10, 20 or 50 clusters per dataset, each with 80 or 500 subjects

100 replicates 1000 replicates
M nj β1 β2 b1,2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 0.5 1 N(10,2.52) 0 0 0 0
80 0.5 1 N(15,5.52) 0 0 0 0

10 500 0.5 1 N(10,2.52) 0 0 0 0
500 0.5 1 N(15,5.52) 0 0 0 0

20 80 0.5 1 N(10,2.52) 0 0 0 0
80 0.5 1 N(15,5.52) 0 0 0 0

20 500 0.5 1 N(10,2.52) 0 0 0 0
500 0.5 1 N(15,5.52) 0 0 0 0

50 80 0.5 1 N(10,2.52) 0 0 0 0
80 0.5 1 N(15,5.52) 0 0 0 0

50 500 0.5 1 N(10,2.52) 0 0 0 0
500 0.5 1 N(15,5.52) 0 0 0 0

10 80 1.8 1 N(0,0.42) 0 0 0 0
80 2.7 1 N(0,0.42) 20 17 22 22

10 500 1.8 1 N(0,0.42) 50 50 25.8 24.9
500 2.7 1 N(0,0.42) 100 100 88.9 89.6

20 80 1.8 1 N(0,0.42) 3 3 0.6 0.4
80 2.7 1 N(0,0.42) 17 7 2.2 1.7

20 500 1.8 1 N(0,0.42) 84 83 17.4 18.9
500 2.7 1 N(0,0.42) 96 100 95.2 95.5

50 80 1.8 1 N(0,0.42) 11 15 8.0 8.2
80 2.7 1 N(0,0.42) 6 2 0.7 0.7

50 500 1.8 1 N(0,0.42) 57 59 31.7 34.6
500 2.7 1 N(0,0.42) 100 98 98.5 97.5

10 80 0.5 2.0 N(0,0.42) 95 92 57 59.6
80 0.5 2.5 N(0,0.42) 100 100 92.7 93.8

10 500 0.5 2.0 N(0,0.42) 100 100 99.9 99.6
500 0.5 2.5 N(0,0.42) 100 100 100 100

20 80 0.5 2.0 N(0,0.42) 82 83 72.8 74.7
80 0.5 2.5 N(0,0.42) 99 98 92.5 93

20 500 0.5 2.0 N(0,0.42) 100 100 99.7 100
500 0.5 2.5 N(0,0.42) 100 100 99.7 99.7

50 80 0.5 2.0 N(0,0.42) 93 89 79.6 80.4
80 0.5 2.5 N(0,0.42) 98 97 87.2 87.8

50 500 0.5 2.0 N(0,0.42) 100 100 99.1 99.1
500 0.5 2.5 N(0,0.42) 100 100 99.9 99.8
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3.3.2 Simulation results when joint perturbations were done

to β1, β2 and bj in first two clusters

The results in Table 3.2 show that the proposed statistic correctly detected the

two outlying clusters a minimum of 39.1% and up to 100% of the times, when the

joint perturbations involved β1 and β2. Where the joint adjustments were done to

β1, β2 and bj , the success rates ranged from 38.3% and up to 100% of the times.

Thus the ranges of the rates were not different, with or without random effects in

the joint perturbations, implying the contribution of random effects in offsetting

cluster 1 or 2 was negligible.

As with cases of separate perturbations in Table 3.1, there was no tangible

differences in performance of the statistic between 100 and 1000 simulations for

cases with large cluster sizes. Again, the performance of the statistic improved with

cluster sample size and fixed effect sizes. Once again, the proposed outlier statistic

performed equally between different number of clusters per dataset, controlling for

cluster sample size and fixed effect size.
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Table 3.2: Percentage of times per 100 or 1000 simulations in which cluster 1 or 2
was detected as outlier by proposed statistic; a case of joint perturbations among
bj , β1 and β2, under 10, 20 or 50 clusters per dataset, each with 80 or 500 subjects

100 replicates 1000 replicates
M nj β1 β2 b1,2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 1.8 2.0 N(0,0.42) 55 68 39.1 41.8
80 2.7 2.5 N(0,0.42) 90 89 74.6 72.7

10 500 1.8 2.0 N(0,0.42) 100 100 99.4 99.1
500 2.7 2.5 N(0,0.42) 100 100 100 100

20 80 1.8 2.0 N(0,0.42) 58 58 43.4 44.8
80 2.7 2.5 N(0,0.42) 86 88 70.2 69.6

20 500 1.8 2.0 N(0,0.42) 99 99 98.9 98.6
500 2.7 2.5 N(0,0.42) 100 100 100 100

50 80 1.8 2.0 N(0,0.42) 59 54 41.2 39.7
80 2.7 2.5 N(0,0.42) 86 87 69 66.8

50 500 1.8 2.0 N(0,0.42) 100 100 99 98.5
500 2.7 2.5 N(0,0.42) 100 100 97.7 98

10 80 1.8 2.0 N(10,2.52) 75 74 38.7 40.9
80 2.7 2.5 N(15,5.52) 85 86 74.6 72.6

10 500 1.8 2.0 N(10,2.52) 100 100 99.3 99.2
500 2.7 2.5 N(15,5.52) 100 100 100 100

20 80 1.8 2.0 N(10,2.52) 48 54 38.3 35.4
80 2.7 2.5 N(15,5.52) 82 76 73.4 73.3

20 500 1.8 2.0 N(1,2.52) 100 100 97.9 98.4
500 2.7 2.5 N(15,5.52) 100 100 99.5 99.3

50 80 1.8 2.0 N(10,2.52) 65 51 41.6 40.8
80 2.7 2.5 N(15,5.52) 79 80 68.9 71.8

50 500 1.8 2.0 N(10,2.52) 100 99 96.1 95.2
500 2.7 2.5 N(15,5.52) 100 100 98.7 99.4

3.4 Application to Malawi child survival data

The proposed outlier statistic was applied along with the standard method of vi-

sual inspection of studentized residual (Langford & Lewis, 1998) on child survival

data, that were collected as part of 2015-16 Malawi Demographic and Health Sur-

vey (MDHS) data. The 2015-16 MDHS, held from 19 October 2015 to 18 February

2016, collected child survival data from women respondents and caregivers aged

15-49 years who provided birth histories. The data set is described in Section 2.6

and summarised in Table B.1. The survey employed a two-stage stratified sampling
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design, with emuneration areas as primary and households as secondary sampling

units. Further information on the 2015-16 MDHS can be found in the survey

report (Malawi National Statistical Office (NSO) & ICF, 2017), and the informa-

tion about the DHS progam and data access are available at www.DHSprogram.com.

In order to balance between sufficient clusters and number of children per clus-

ter, the rural and urban areas in each district were taken as separate clusters,

resulting into 52 sub-districts. Child birth order and sex were used as covariates

in the analysis based on previous studies (Manda, 2001). The Cox frailty model

was fitted to the data and cluster outliers were assessed. The event of interest was

death of a child from any cause before 60 months of age, as in Section 2.6. The

event-time was age in months as at death or censoring point. The ages-at-death

that were recorded as zero months were transformed into random Uniform(0,1)

values to reflect proportions of month-days lived by a child before death or censor-

ing. Administrative censoring was used, and children who were still alive or had

survived up to 60 months were censored. The fitted model was as follows:

hij(age) = h0(age)exp(−0.185×Female−0.214×Birthorder

+ 0.0233×Birthordersquare+ subdistrict).

(3.17)

The model results showed that female children had significantly lower risk of

death than the male children (p-value = 0.0096). While children with higher birth

order had significantly reduced risk of death as in Section 2.6.

3.4.1 Under-Five Mortality Outlier Sub-Districts in Malawi

The computations used the national under-five mortality rate of 63 deaths per

1000 live births (Malawi National Statistical Office (NSO) & ICF, 2017) as base-

line hazard. The application of the proposed statistic was analysed in comparison

with the visual inspection method for standardised residuals suggested in (Lang-

ford & Lewis, 1998) to identify outlier clusters.
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The results in Figure 3.2(a) indicate that the proposed statistic had detected

Dedza urban, Nsanje urban, and Chikwawa rural as under-five mortality outlier

subdistricts. This means that these clusters had poorly fitted survival times of the

children compared to the other clusters. On the other hand, the visual inspection

on individual deviance residuals in Figure 3.2 (b) could not conclusively determine

an outlier cluster, as the plots of the deviance residuals highly overlapped across

clusters.

(a) Estimates of proposed outlier statistic per
cluster upon fitting the frailty Cox model on
child survival data

(b) Plots of deviance residuals for children in
each cluster following a frailty model on child
survival data

Figure 3.2: Outlier assessment results using the proposed group outlier statistic in
comparison with method of visual inspection of standardised residuals (Langford
& Lewis, 1998) applied on Malawi child survival data, 2015-16 MDHS. Source:
Researcher
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Chapter 4

Cluster Influence for Survival

Mixed Model

This chapter presents a method for assessing group influence based on the clustered

semiparametric survival model. Techniques that are used in univariate survival

model are revisited, before deriving the influence measure for the multivariate

survival model.

4.1 Background to influence analysis for survival

data

Suppose θ̂ is a set of maximum likelihood estimators of model parameters θ, with

θ consisting of β, bj , D, and other parameters, and let θ̂(ij) denotes the estimator

of θ obtained from the data without i-th observation from j-th cluster. Then,

the influence of i-th data record from j-th cluster on the estimator θ̂ is defined as

the difference in estimators, ∆θ̂ij = θ̂− θ̂(ij) (Das & Gogoi, 2015; Cain & Lange,

1984). This can be obtained for each observation by manually deleting the obser-

vation from data and obtain the difference in parameter estimates upon refitting

the model to the reduced dataset. Also, for nonlinear models that use iteratave

estimation techniques, ∆θ̂ij can be manually obtained using one-step iterative
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approximation, upon removing a data record. But, these approaches are compu-

tationally demanding, since the model has to be refitted several times. In that

regard, efficient model post-estimation influence statistics that result from fitting

the model to data once are developed and made available in literature.

With generalised linear and linear mixed-effects models, where parameter esti-

mators θ̂ are obtained analytically, influence measure ∆θ̂ij is a function of model’s

basic building blocks, i.e. Studentized residuals, error contrast matrix, and in-

verse of covariance matrix of response variable (Zewotir & Galpin, 2005). In such

models, ∆θ̂ij is either computed analytically using methods like Cook’s distance

(D. Cook, 1977) or it is approximated for one-step ML estimation using updating

formulae techniques (Zewotir, 2008; Nobre & Singer, 2011). Others use first-order

Taylor series expansion on score function around θ̂(ij) (Xiang et al., 2002). For

Cox proportional hazard (PH) model, the analytic influence techniques such as

Cook’s distance do not apply, since subjects enter the likelihood as members of

various risk sets, such that deleting a data point affects a number of these risk sets

other than one (D. R. Cox, 1972).

Therefore, various approximations for influence statistics have been developed

for univariate survival data. One technique is through first-order Taylor series

expansion about a unity weight $ij of an observation in score function, where

$ij = 0 for a subject that has been removed from data and $ij = 1 otherwise (Cain

& Lange, 1984). The weights $ij of observations result into a weighted partial

likelihood L(β($ij)), as well as weighted score function Uβ($ij) for the model.

Subsequently, the weighted ML estimators ˆβ($ij) become β̂(1) = β̂ or β̂(0) = β̂(ij),

where β̂(ij) is the estimator obtained upon dropping ij-th case in the dataset, and

β̂ the one obtained from full data. Then, using first-order Taylor series expansion

about $ij = 1, an estimate of influence is given by ∆β̂ij = β̂− β̂(ij) = ∂β̂/∂$ij ,

which is obtained by solving for ∂β̂/∂$ij when the score function is equated to
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zero (Cain & Lange, 1984), as follows:

(∂U/∂β̂)(∂β̂/∂$ij) +∂U/∂$ij = 0

∴ ∂β̂/∂$ij = (−∂U/∂β̂)−1∂U/∂$ij .

(4.1)

where the likelihood for univariate model is: L(β|t,X) =
∏
r[

exp(XT
ijβ)∑

s∈R(til)
$ijexp(X

T
isβ)

]$ij ,

and the weighted score function is first derivative of logarithm of L(β|t,X) with

respect to β. The approach in equation (4.1) is also referred to as infinitesimal

jackknife measure of influence of a data record on β̂ (Therneau et al., 1990).

A related method is the score residual, which is a product of a subject’s residual

and its extremity in covariate value (Therneau et al., 1990). It is given by:

vij(β̂) =
∫ ∞

0

[
Xijp(t)− X̄p(β̂, t)

]
dm(tij), (4.2)

where m(tij) = N(tij)−
∫ tij
0 Yij(t)exp(X

T
ij(t)β̂)dĤ0(t) is residual of ij-th unit at

time tij , also called martingale residual, which measures excess number of events;

and p denotes number of covariates; while X̄p =
∑
Xijpexp(X

T
ij β̂)∑

s∈R(til)
exp(XT

isβ̂)
is the weighted

average of covariate Xijp over R(tlj) risk sets. The measure (4.2) is used to es-

timate sensitivity of log-likelihood to infinitesimal displacements of β̂. Using a

weighted partial likelihood, Therneau et al. (1990) showed that the residual (4.2)

is similar to the jackknife measure (4.1) and that ∂U/∂$ij = (vij1,vij2, ...,vijp)
T .

The third method is the augmented or perturbed regression model (Storer &

Crowley, 1985; Therneau et al., 1990), which is a one-step update in θ̂ when a

single indicator covariate is added to the model. The added covariate has value

1 for ij-th data point and 0 for all other observations (Therneau et al., 1990).

The augmented model influence statistic for univariate survival model (Storer &
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Crowley, 1985) is given by:

β̂1 = β̂0 + I−1(β̂0)l̇(β̂0)

⇒ β̂1− β̂0 = I−1(β̂0)l̇(β̂0)

=
−I−1(β̂0)ξij

πij− ξTijI−1(β̂0)ξij
m(tij)

(4.3)

where m(tij) is the martingale residual defined along with equation (4.2), ξijp =

Ĥ0(Xijp−X̄p(β̂))exp(XT
ij β̂) represents a column vector from matrixX correspond-

ing to 1′s, πij = Ĥ0(t)(1− c̄ij(β̂))exp(β̂TXT
ij) is the diagonal identity matrix with

entries 1 throughout, except for the subject that has been removed, which has 0

entry, and cij is the indicator covariate that has been added to the dataset (Storer

& Crowley, 1985).

As it may be appreciated, these methods are all related because they are based

on rate of change of the maximum likelihood estimators, as a result of removal of

one record from the data (Therneau et al., 1990). The influence measure approx-

imation techniques are also supported in the Bayesian framework for parameter

estimation for survival semiparametric model. In Bayesian set up for a survival

model, the approximation of case-deletion influence measure is computed by the

Kullback-Leibler divergence, denoted by K(P,P(ij)), between the posterior distri-

butions P of parameter θ for full data D = {t,σ,X} and P(ij) for the data without

ij-th subject, D = {t(ij),σ(i),X(ij)} (Cho et al., 2009; Suzuki et al., 2013). The

Bayesian influence measure of a subject on posterior probability is given by:

K(P,P(ij)) =
∫
p(β|D)log

p(β|D)

p(β|D(ij))
dβ, (4.4)

where p(β|D)αL(β|D)f(β) and p(β|D(ij))αL(β|D(i))f(β) and with f(β) the pos-

terior distribution of β.

Depending on the choice of prior distribution, the computation of the influence
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diagnostic measure (4.4) is obtained from the product of the likelihood and prior

distribution. The computation of the values of the measure is numerically done

using Markov chain Monte Carlo samples from the full data posterior distribution

(Cho et al., 2009; Suzuki et al., 2013).

This study considered the influence methods that result from the parametric

estimation process, and not the Bayesian estimation. Further, Therneau et al.

(1990) demonstrated that using the score residual, jackknife, and augmented model

approaches yield similar conclusions about influence of a subject, but the score

residual has a number of advantages including simplicity of interpretation. It

is for this reason that this study applied the method of score residual to derive

counterpart influence statistic for the clustered survival data. The extension is

derived and presented in the next section.

4.2 Proposed influence statistic for multivariate

survival data

Consider a case of shared frailty model for model (1.1), then the joint partial

likelihood function (1.8) will be simplified to:

L(β,σ2) =
M∏
j=1

nj∏
i=1

 exp(XT
ljβ+ bj)∑

s∈R(tlj) exp(X
T
sjβ+ bj)

δij

×
M∏
j=1

(2πσ2)
−1
2 exp

− 1

2σ2

M∑
j=1

b2j

 .
(4.5)

The full joint partial log-likelihood function is:

l(β,σ2) =
M∑
j=1

nj∑
i=1

δij

(XT
ijβ+ bj)− ln

∑
s∈R(tlj)

exp(XT
sjβ+ bj)


+ log[(2πσ2)

−n
2 ]− 1

2σ2

M∑
j=1

b2j .

(4.6)

The score functions for β and bj follow from the log-likelihood (4.6) and are,
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respectively, given by:

Uβ =
∂l(β,σ2)

∂β
=

M∑
j=1

nj∑
i=1

δij

Xij−
∑
s∈R(tlj)Xsjexp(X

T
sjβ+ bj)∑

s∈R(tlj) exp(X
T
sjβ+ bj)

 , (4.7)

and

Ub =
∂l(β,σ2)

∂bj
=

M∑
j=1

nj∑
i=1

δij

1−
∑
s∈R(tlj) exp(X

T
sjβ+ bj)∑

s∈R(tlj) exp(X
T
sjβ+ bj)

− 1

σ2

M∑
i=1

bj . (4.8)

The estimates for β and bj are found by solving the score functions (4.7) and

(4.8) simultaneously, when they are equated to zero. The values of estimates are

computed through numerical algorithms, such as Newton-Raphson method, since

the equations (4.7) and (4.8) are not in closed forms (Ripatti & Palmgren, 2000).

Therefore, effect of dropping a cluster on β̂ can be approximated manually by one-

step Newton-Raphson process, through refitting the model to the data for each

removal of a cluster. However, this is time-consuming as stated before, because it

requires refitting the model for each removal of a cluster.

This study therefore proposes an extension of the score residual (4.2) (Therneau

et al., 1990), that results from fitting the model to data once, to study influence of

clusters on fixed effects estimators from model (1.1). As for estimates of random

effects b, model (1.1) assumes that bj are mutually independent between clus-

ters, hence deleting a cluster will not affect the estimator b̂ for the other clusters.

This has been shown for linear mixed-effects models using first-order Taylor-series

expansion on score function (Xiang et al., 2002). Hence, this study focuses on

deriving group influence statistic for fixed effect estimators β̂, that depend on ob-

servations from all clusters.

To analyse influence for grouped observations, the study first defines a leverage

and a residual for a single unit ij at a given time tij . The score process (4.7) derived

for the model (1.1) is essentially a row vector of differences between the individual
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ij covariate value and the average for the covariates of all individuals at risk at

time tij . In essence, this is analogous to leverage in linear models (Sarkar et al.,

2011; Z. Zhang, 2016). For individual ij, let rij = exp(XT
ij β̂+ b̂j) be its risk score.

Then, at the lj-th event time tlj , the Schoenfeld residual (or leverage) (Schoenfeld,

1982), denoted by wlj , is given by:

wli =Xlj−
∑
s∈R(tlj) rsjXsi∑
s∈R(tlj) rsj

,

=Xlj− X̄(β̂, b̂j , tlj),

(4.9)

where rsj = exp(XT
sj β̂+ b̂j) is the risk score for unit ij in the risk set R(tlj), and

Xlj is the covariate vector of the individual experiencing the event at time tlj .

Further, β̂ and b̂j are, respectively, fixed and random effects terms estimated from

the log-likelihood (4.6). In addition, X̄(.) is a vector whose elements are the con-

ditional weighted means of the covariates values for the individuals at risk of event

at time tij . Hence, the dimension of (4.9) is 1× p vector corresponding to each

ij-th unit in the risk set.

The quantity (4.9) is also a residual proposed by Schoenfeld (1982) that sums

the score processes (4.7) of units with failure time at each unique event, assuming

no ties. Denote Wlj as leverages wlj for all nl data points in the risk set and p

covariates, then Wlj will be nl× p matrix. Furthermore, wlj ∈ [−∞,+∞], with

mean E(wlj) =E(Xlj)−E[X̄(β̂, b̂j , til)] =E(Xlj)−E(Xlj) = 0. The value 0 of wlj

corresponds to observations with intermediate covariates values and are thus close

to the weighted average for covariate Xlj , and hence their leverage on the fitted

survival curve is negligible. While large negative and positive values of wlj corre-

spond to observations that have unusual covariates values, that are far from the

weighted average of Xlj , and hence they have high leverage on the fitted survival

curve (Z. Zhang, 2016).
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A residual, on the other hand, means the difference between the observed and

fitted outcome. The smaller this is, the better the model’s fit for the observation

of interest (Aguinis et al., 2013; Z. Zhang, 2016). For survival data, one of the

residuals is the martingale, defined along equation (4.2), which is an estimate of

difference in counts of observed and estimated events at each observation time

(Therneau et al., 1990). Extending the univariate martingale residual to multi-

variate survival data model (1.1), we obtain an nl× 1 stacked vector of residuals

for units in the risk set R(tlj) given by:

m(tlj) =N(tlj)− Ĥ0(t)exp(XT
lj β̂+ b̂j)

⇒



m(t11)

...

m(tn11)

m(t12)

...

m(tn22)

...

m(t1M )

...

m(tnMM )



=



N(t11)− Ĥ0(t)exp(XT
11β̂+ b̂1)

...

N(tn11)− Ĥ0(t)exp(XT
n11β̂+ b̂1)

N(t12)− Ĥ0(t)exp(XT
12β̂+ b̂2)

...

N(tn22)− Ĥ0(t)exp(XT
n22β̂+ b̂2)

...

N(t1M )− Ĥ0(t)exp(XT
1M β̂+ b̂M )

...

N(tnMM )− Ĥ0(t)exp(XT
nMM β̂+ b̂M )



,
(4.10)

where Ĥ0(t) =
∫ t
−∞h0(s)ds is the estimated cumulative baseline hazard. The resid-

ual (4.10) has values in the range (−∞,1], because N(til) is either 0 or 1 and

Ĥ0(t)exp(XT
lj β̂+ b̂j) has values in the interval [0,∞). In addition, E(m(tlj)) =

E(N(tlj))−E(Λ̂0(t)exp(XT
lj β̂ + b̂j)) = E(N(tlj))−E(N(tlj)) = 0, since the off-

minus quantity in (4.10) is the average number of events.

Both leverage quantity (4.9) and residual (4.10) have correlated values for sub-

jects that are in the same cluster due to shared random effect, but independent

values between clusters. Due to this property, we utilise the independence of clus-
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ters to derive an influence statistic for detecting impact of dropping a cluster on

the estimate of β. Influence of an observation on regression parameter estimates is

a product of its outlier and leverage values. Many studies, for example (D. Cook,

1977) for linear models, (Zewotir & Galpin, 2005) for linear mixed-effects models,

(Therneau et al., 1990) for univariate survival models, have shown this. Thus, in

deriving influence statistics, appropriate case-deletion residual and leverage mea-

sures need to be defined first. Using the residual defined in (4.10) and leverage in

(4.9) for model (1.1), we propose an analogue of the score residual (4.2) (Therneau

et al., 1990) to measure influence of a cluster on β̂ for the model (1.1) as a vector

product of values of vector (4.10) and those of columns of matrix (4.9) for subjects

under risk set R(til) in the same cluster i, given by:

vj(β̂) = [m(tlj)]
T ×Wlj . (4.11)

The extended score residual (4.11) is an ((1×n1)× (n1×p)...(1×nM )× (nM ×

p)) =M×p matrix, as the value v1(β̂) for first cluster will be a (1×n1)×(n1×p) =

1× p vector reflecting influence of first cluster on each β̂ for p covariates, while

v2(β̂) for second cluster will be a (1×n2)× (n2× p) = 1× p vector, and so forth.

The measure (4.11) will quantify joint influence of observations in a cluster on

the estimate β̂, since each of its components is a measure of joint extremity of

cluster observations in terms of survival outcomes, as well as in covariates’ values

off the fitted survival curve. Since Wlj in (4.11) has elements wlj ∈ [−∞,+∞] and

m(tlj) ∈ (−∞,1], both with mean 0, then the proposed influence statistic (4.11) is

expected to have mean 0.

Large positive value of the proposed statistic (4.11) means a cluster has ma-

jority of subjects that have high positive values in wlj that coincide with high

positive values in m(tlj), or large negative values in wlj coinciding with large neg-

ative values in m(tlj). Technically, this means the cluster has majority of large

positive leverage subjects that experienced more events (i.e. failed too early) than
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predicted by the model or has most subjects with large negative leverage that sur-

vived longer than predicted by the model. Hence, such a cluster requires further

investigation. On the other hand, large negative value of (4.11) implies that a

cluster has majority of subjects that have large positive leverage wlj that coincide

with large negative values of the residual m(tlj) or viceversa. In other words, this

implies that the cluster has majority of large positive leverage observations that

experienced fewer events (i.e. survived longer) than predicted by the model or has

majority of large negative leverage subjects that failed too early than predicted by

the model. Again, such a cluster will need further investigation.

The values of (4.11) that are close to zero imply most subjects of the corre-

sponding clusters have either leverage close to zero or residual close to zero, hence

such clusters have no issues for follow up investigation. To decide on influential

groups, some studies in linear mixed-effects models have used a cutoff of ±2/
√
M

for the values of the influence statistic (Belsley et al., 2005; Nieuwenhuis et al.,

2012). However, graphical methods or relative comparisons of influence values

for groups are commonly used (Zewotir & Galpin, 2007). We applied graphical

techniques in the next chapter to examine influential clusters to the fixed-effects

estimates in the fitted semiparametric survival mixed models using the proposed

influence statistic (4.11).
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Chapter 5

Simulation Results and

Application of the Influence

Statistic

The data generated from a simulation study described in Section 3.3 were utilised

to evaluate performance of the proposed influence statistic developed in Chapter 4.

The two clusters in which the generated survival data from model (3.16) involved

perturbed β1 and β2 were subjected to examination to observe whether they would

be identified by the proposed influence statistic. The same assessment criterion

described in Section 3.3 was used, that is, through percentage of simulations for

which the proposed influence statistic correctly identified the two target clusters as

having influence on β1 or β2 using the cutoff given in Section 3.3. Upon fitting the

model (3.16) to the simulated data, the proposed influence statistic was computed

and its performance evaluated.

An inspection of performance of the statistic displayed in Figure 5.1 indicates

that the residual detected influence of the first two clusters on β̂1 and β̂2. The

values of the statistic were outstandingly higher in the first two clusters than in the

other clusters. This study therefore assessed success rates of the proposed influence
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statistic under each simulation scenario using the cutoff presented in Section 3.3.

(a) Scatter plots of influence statistic vs cluster
id for a case of data with perturbed β2 = 2.0 in 2
of 50-clusters sample, each with 80 subjects and
with 100 replications

(b) Scatter plots of influence statistic vs cluster
id for a case of data with perturbed β1 = 2.7 in
2 of 50-clusters sample, each with 500 subjects
and with 1000 replications

Figure 5.1: Plots of cluster influence on β̂1 or β̂2 under different simulations.
Source: Researcher

5.1 Simulation results for influence of cluster 1

or 2 on β̂1

Table 5.1 shows success rates of the proposed influence statistic in detecting impact

of cluster 1 or 2 on β̂1. The results show that the statistic correctly identified the

two influential clusters with high percentage, when the perturbations involved β1

or β1 and β2 jointly. The rates for influence of cluster 1 or 2 on β̂1 were relatively

low, when it was β2 that was twirked. The results also show that the performance

of the proposed influence residual improved with increasing cluster sample size,

such that the success rates were as high as 100% where cluster size was 500 and

lower with varying degrees when cluster size was 80 subjects. In addition, perfor-

mance of the statistic improved with increasing fixed effect size, this was noticeable

where cluster sample sizes were low.

It is also shown that performance of the influence statistic was not different

between 100 and 1000 simulation sizes, when cluster sample size was 500 subjects.
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But the success rates generally slumped in 1000 replications, when cluster size was

80. Finally, the results show that the influence statistic was equally effective across

different number of clusters per dataset.
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Table 5.1: Percentage of simulations1 that identified cluster 1 or 2 as influ-
ential to β̂1

100 replicates 1000 replicates
M nj β1 β2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 1.8 1 84 87 60.9 59.4
80 2.7 1 100 100 99.3 99.2

10 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100

20 80 1.8 1 74 75 46.4 44.9
80 2.7 1 99 99 95.3 95.1

20 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100

50 80 1.8 1 34 31 10.7 11.8
80 2.7 1 75 75 52.7 55.3

50 500 1.8 1 100 100 100 100
500 2.7 1 100 100 100 100

10 80 0.5 2.0 19 22 42 49
80 0.5 2.5 36 38 32.3 36.3

10 500 0.5 2.0 27 29 13.1 15.1
500 0.5 2.5 47 39 41.1 38.5

20 80 0.5 2.0 27 25 10.6 13.1
80 0.5 2.5 27 31 36.9 40.4

20 500 0.5 2.0 29 30 18.9 20.4
500 0.5 2.5 60 51 43.9 45

50 80 0.5 2.0 30 29 13.2 12.9
80 0.5 2.5 60 54 43.7 42.8

50 500 0.5 2.0 30 28 23.5 22.1
500 0.5 2.5 63 62 47.6 48.6

10 80 1.8 2.0 69 77 57.5 59
80 2.7 2.5 99 96 84.6 83

10 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

20 80 1.8 2.0 70 69 43.8 46.2
80 2.7 2.5 92 92 76.6 74.7

20 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

50 80 1.8 2.0 67 51 45.8 44.9
80 2.7 2.5 86 87 71.9 70.6

50 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

1 No perturbations were done to data in other clusters than 1 and 2, in those other
clusters model (3.16) had β1 = 0.5, β2 = 1.
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5.2 Simulation results for influence of cluster 1

or 2 on β̂2

The results in Table 5.2 are for success rates of the proposed influence statistic

in identifying cluster 1 or 2 as having influence on β̂2. The findings show that

the proposed influence statistic highly detected impact of first two clusters on β̂2,

when it was β2 or jointly β2 and β1 that was perturbed during data generation.

The success rates of the statistic in detecting influence of cluster 1 or 2 on β̂2 were

low when it was β1 that was perturbed.

As was the case with β̂1, the success rates of the statistic on influence of

cluster 1 or 2 on β̂2 improved with increasing cluster sample size, as the rates

were consitently higher for cluster sizes of 500 and lower with cluster sizes of 80

subjects. Again, the performance of the statistic improved with increasing fixed

effect size, a situation that was also noticeable in low cluster sizes like before.

Likewise, there was no difference in performance of the proposed influence statistic

between 100 and 1000 simulation sizes, this was much apparent in large cluster

sample sizes. Lastly, it is also shown that the influence statistic performed equally

well in different number of clusters per sample.

97



Table 5.2: Percentage of simulations1 that identified cluster 1 or 2 as influ-
ential to β̂2

100 replicates 1000 replicates
M nj β1 β2 %Cluster1 %Cluster2 %Cluster1 %Cluster2

10 80 1.8 1 2 2 0.9 0.7
80 2.7 1 4 4 1.2 1.3

10 500 1.8 1 0 0 0 0
500 2.7 1 0 0 2.6 2.3

20 80 1.8 1 14 12 4.8 5.5
80 2.7 1 0.8 0.6 4.6 4.6

20 500 1.8 1 0.9 1.2 1.3 1.4
500 2.7 1 1 0.8 2 1.2

50 80 1.8 1 34 40 13.7 14.8
80 2.7 1 34 33 19.6 20.0

50 500 1.8 1 26 18 13.4 11
500 2.7 1 18 14 8.5 7.4

10 80 0.5 2.0 94 97 93.8 93.5
80 0.5 2.5 98 100 98.5 97.9

10 500 0.5 2.0 100 100 100 100
500 0.5 2.5 100 100 100 100

20 80 0.5 2.0 98 98 93.4 92.7
80 0.5 2.5 100 100 97.7 97.4

20 500 0.5 2.0 100 100 100 100
500 0.5 2.5 100 100 100 100

50 80 0.5 2.0 99 97 94.4 94.6
80 0.5 2.5 100 100 97.3 97.6

50 500 0.5 2.0 100 100 100 100
500 0.5 2.5 100 100 100 100

10 80 1.8 2.0 72 77 39.1 42.5
80 2.7 2.5 99 92 81.6 81.3

10 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

20 80 1.8 2.0 64 73 46.7 45
80 2.7 2.5 88 81 65.2 63.7

20 500 1.8 2.0 100 100 100 100
500 2.7 2.5 100 100 100 100

50 80 1.8 2.0 59 53 43.4 43.4
80 2.7 2.5 78 74 63.6 61.5

50 500 1.8 2.0 100 100 99.9 99.8
500 2.7 2.5 100 100 100 100

1 No perturbations were done to data in other clusters than 1 and 2, in those other
clusters model (3.16) had β1 = 0.5, β2 = 1.
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5.3 Application to Malawi child survival data

Using the 2015-16 MDHS child survival data described in Section 3.4, the proposed

influence statistic was computed. The fitted frailty model in equation (3.17) was

used:

hij(age) = h0(age)exp(−0.185×Female−0.214×Birthorder

+ 0.023×Birthordersquared+ subdistrict).

(5.1)

The study analysed influence of each cluster on effect of being female on child

mortality for better comparison with findings from Section 2.6. The national

under-five mortality rate of 63 deaths per 1000 live births (Malawi National Statis-

tical Office (NSO) & ICF, 2017) was used as baseline hazard rate. Upon identifying

the influential clusters to the model, their impact on fixed regression parameter

estimates was analysed through re-fitting the model to data without the detected

clusters and observe the changes in the parameter estimates for effect of being

female on child mortality.

5.3.1 Results for influential clusters on effect of being fe-

male on child mortality

The results in Figure 5.2 show that the proposed influence statistic detected Ka-

sungu rural cluster as having outright positive influence on effect of female gender

on child mortality. This means that Kasungu rural cluster had majority of chil-

dren with high leverage on estimated mortality that had also died too early than

predicted by the model, such that dropping this cluster from the model would

cause a significant change on estimated effect of female gender on child mortality.

While Phalombe urban, Karonga rural and Salima urban clusters were identified

as having negative borderline influence on effect of being female on child mortality.

This implies that the three clusters had majority of children with high leverage on
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estimated mortality who had also survived longer than predicted by the model,

such that removing these three clusters from analysis would impact on estimated

effect of female gender on child mortality.

Figure 5.2: Sub-district level estimates of the proposed influence statistic for effect
of female gender upon fitting a frailty Cox hazard regression model to Malawi child
survival data, 2015-16 MDHS. Source: Researcher

5.3.2 Impact of the identified influential clusters on model

estimate for effect of female gender on mortality

Table 5.3 shows results of model estimates using full Malawi child survival dataset

and also the data without two of the identified influential clusters; Kasungu rural

and Salima urban. The findings indicate that removal of Kasungu rural cluster

from analysis resulted in further reduction in logarithm hazard of death for female

children by 0.0163. Thus, the survival model was better off without data from

Kasungu rural cluster. This was also noticed with the reduction in p-value by

0.0042. While dropping Salima urban cluster increased the hazard of death in fe-

male children by 0.0015. Thus, the data from Salima urban cluster were required

in the model. Again, this is reflected in the p-value that got higher upon removing

this cluster.
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Removing both clusters from analysis resulted in reduction in logarithm of

hazard of death in female children, but not as much as when Kasungu rural cluster

was dropped alone. Thus, the effect of dropping the two clusters at the same

time did not add value to the estimation compared to dropping each one of them

separately. This was the case since Kasungu rural cluster had positive influence,

while Salima urban negative influence on estimate of effect of female gender on

child mortality. The standard errors of the parameter estimates slightly increased

in each case, implying that the original model parameter estimates from full data

were biased. The variance of random effects also got lower in both cases. Further,

the results vindicate the magnitude of influence of each of the two clusters as

reported by the proposed statistic in the previous section. It is shown in Table 5.3

that impact of Kasungu rural cluster on the estimate of effect of female gender on

mortalirt was so huge compared to that of Salima urban cluster.

Table 5.3: Estimates of effect of being female on mortality with and without Kasungu
rural or Salima urban clusters or both in the Malawi child survival dataset

Parameter Full dataWithout Kasungu rural (diff1)Without Salima urban (diff1)Without Both (diff1)

β̂ -0.1848 -0.2011 (0.0163) -0.1833 (-0.0015) -0.1996 (0.0148)
se(β̂) 0.0713 0.0722 (-0.0009) 0.0715 (-0.0002) 0.0723 (-0.0010)
p-value 0.0096 0.0054 (0.0042) 0.0100 (-0.0004) 0.0058 (0.0038)
var(re) 0.0419 0.0399 (0.0020) 0.0418 (0.0001) 0.0397 (0.0022)

diff1 = estimate under full data - estimate from reduced data, se(β̂) is standard error of β̂, var(re)
is variance of random effects.
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Chapter 6

Discussion and Conclusions

This chapter discusses the findings from the evaluation of the proposed outlier

and influence statistics for multivariate survival data model. It also discusses the

findings and implications arising from the analysis of clustered child survival data

in Malawi based on a nationally representative health survey. In addition, the

main biostatistical contribution of this PhD work in the broader topics of outlier

and influence statistics for multivariate models has been discussed.

6.1 Discussion of findings

This study set out to develop statistics for detecting outlying and influential groups

of data points in a multivariate survival data model. The group outlier and influ-

ence statistics have been derived. The proposed outlier statistic extends methods

that are developed for the linear mixed-effects model. While the proposed influ-

ence statistic extends the score residual that is developed for the univariate survival

model. In each case, the proposed statistics utilise the model postestimation quan-

tities that have correlated values within clusters, but uncorrelated across clusters.

The proposed statistics have proved to be very effective in identifying outlying and

influential groups of observations in the analysis of multivariate survival data. For

example, when a fixed effect coefficient was perturbed in one cluster, the proposed

outlier statistic correctly identified the affected cluster 99.8% of the time and the
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influence statistic 100% of the time.

The findings have shown that performance of both the proposed outlier and

influence statistics improves with increasing cluster sample size. This results from

lowered uncertainty in repeated sampling that any statistic gains from large sam-

ple size (Hemez et al., 2010). So, it is likely for an outlying or influential cluster to

be detected as such using the proposed statistics, when cluster sample size is large

enough compared to small cluster sizes. This is also the reason why the success

rates of the statistics were observed to be stable in large simulation sizes com-

pared to small simulation sizes, for cases of large cluster sample sizes, compared

to small cluster sizes. With large cluster sizes, the performance of both outlier

and influence statistics was not affected by the number of repetition of sampling.

This means that the proposed statistics fulfill the property of robustness required

for any statistical tool (Hemez et al., 2010). The success rates of a ‘good’ residual

must converge to the same range of values in repeated experimentations. Further-

more, both proposed statistics were effective regardless of the number of clusters

per dataset.

Evaluation of the proposed statistics has not supported a definitive cutoff for

their application. Thus, relative comparisons of values of the statistics across

clusters suffice to examine outlying or influential clusters of observations to the

mixed survival model (Zewotir & Galpin, 2006). With linear mixed-effects mod-

els, Nieuwenhuis et al. (2012) suggest using a cutoff of 2/
√
M to assess influential

groups, but this cannot be suggested as a standard for clustered survival data,

as demonstrated in this study. A search for proper cutoff for examining outlying

and influential clusters in mixed-effects models is still being debated in literature.

Since, each fitted model to data may not be entirely correct for every dataset,

outlier and influence residual cutoffs have to be applied in a flexible manner using

relative comparisons of clusters in a particular dataset as observed by Zewotir &
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Galpin (2006).

With the frailty survival model that was used in this study, in which observa-

tions in one cluster share a random effect that is additive to fixed covariates in

a model and hence in the extended martingale residual, the outlying tendency of

a cluster based on the proposed outlier statistic is largely influenced by the fixed

covariates values of subjects in the model and not values of random effects. Pre-

viously, it has been viewed that the random effects part of a hierarchical model

may have contribution to making clusters outliers (Langford & Lewis, 1998). But

simulation studies conducted as part of this study have shown contrary findings.

Since estimates of random-effects are considered as best linear unbiased predictors

(BLUPs) of the random effects, they may serve to assess correct specification of the

random effects part of the mixed model Schabenberger (2005); Zewotir & Galpin

(2007); Loy & Hofmann (2014).

It might be necessary to identify individual outlying and influential subjects

in the identified outlying and influential clusters to understand their contribution

in making the clusters as such (Langford & Lewis, 1998; Zewotir & Galpin, 2006).

Ordinarily, Xiang et al. (2002) observed that group-level diagnostics are well ap-

plicable to individual-level data through assessing observations nested within each

cluster. This study did not perform subject-level outlier or influence analyses, as

the assumed dependence of observations within a cluster paused a challenge for

such analyses. Likewise, a score residual has potential to diagnose the proportional

hazard assumption in a survival model (Therneau et al., 1990); this too was not

explored for the proposed influence statistic for clustered survival data.

Perturbing regression parameters to introduce unusual observations in the data

has been a standard practice for evaluating newly introduced diagnostic statistics

(Xiang et al., 2002; Zewotir & Galpin, 2006; Kontopantelis & Reeves, 2012; Montez-
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Rath et al., 2017). However, for clustered survival data, deciding a threshold for

which a parameter value can cause the survival times in a cluster to be outlying or

the cluster to be influential on regression coefficients would be purely guess-work

of the analyst. The absence of literature on such reference values contributed to

uncertainty in deciding effect sizes for perturbed parameter values during simula-

tions in this study. As an alternative, some studies have used direct mechanical

imputations of unusual values for the response variable for few target subjects

or groups of observations in the already-generated dataset. This is also done on

covariates data by using a different probability distribution to generate covariate

values of the target subjects (Zewotir & Galpin, 2006; Cho et al., 2009).

When applied to child survival data from Malawi with 56 clusters, the proposed

outlier statistic identified two urban clusters: Dedza urban and Nsanje urban and

one rural cluster: Chikwawa rural as outliers to child survival in Malawi, based on

a mixed survival model that had covariates: sex and birth order of a child. This

meant the three clusters had majority of children that were poorly fitted by the

model. The three districts are located off the major cities in the country or they

are rural-based. Although, this study did not estimate predicted survival proba-

bilities of children in each subdistrict, it might be that children in the detected

outlying subdistricts are at high risk of death since rural settings are subjected

to low access to health services due to long distance to clinics (Ustrup et al., 2014).

The results from applying the influence statistic on under-five mortality data

identified four clusters that had influence on the model, one with outright positive

influence and the other three with borderline negative influence. Upon investigat-

ing the clusters, it was confirmed that deleting one with outright positive influence

caused a huge change on regression estimates, while the other with borderline in-

fluence impacted a small change. This confirmed relevance and usability of the

proposed influence statistic for the multivariate survival model. Given survival
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data with large number of clusters, performing the exact delete-one analysis be-

comes computationally demanding and tedious for assessment of cluster influence,

as it involves fitting and re-fitting the model to the data for each removed cluster.

Therefore, the proposed influence statistic becomes practical and time-effective

method for the group influence examination for the clustered survival data model,

as it results from fitting the model once.

Furthermore, none of the influential subdistricts detected through the residual

‘averaging’ method (Jennings, 1986; Duchateau & Janssen, 2005; Legrand et al.,

2006) for univariate survival model reported in Section 2.6 were commonly iden-

tified by the application of the proposed influence statistic in Section 5.3 in this

study. Similarly, none of the outlier clusters reported by the random effects resid-

ual in Section 2.6 were commonly identified by the application of the proposed

outlier statistic in Section 3.4 in this study. But Chikwawa rural subdistrict was

detected as an outlier by both the averaging method of unrivariate survival model

residual in Section 2.6 and the proposed outlier statistic in Section 3.4. The ad-

vantage of using mixed survival model when the data have apparent clustering is

in ensuring the unbiased estimates of regression coefficients (Liang & Zeger, 1993),

which can in turn put value to the proposed diagnostic statistics in this study, that

are based on fitting a multivariate survival model to clustered survival data.

Overall, the application of this study to child survival data from Malawi showed

that female children were associated with lower risk of mortality in the first five

years of age compared to their male counterparts. It was not the intention of

this study to discuss reasons for this effect beyond evaluating the applicability of

the derived outlier and influence statistics on the data. However, studies have

attributed the trend to genetic and biological makeup as well as preconception

environments that put male babies to higher risk of suffering from diseases than

female children (Pongou, 2013).
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6.2 Limitations and challenges of the study

The simulation and application studies done in this PhD work are subject to some

limitations. This section highlights some of these challenges.

The proposed outlier and influence statistics apply to a clustered survival model

with time-independent covariates and multivariate normal random effects for ana-

lytical convenience. The derivation of the outlier and influence statistics could not

have been straightforward had the model used assumed time-dependent covari-

ates and non-normally distributed random effects, although parameter estimation

methods exist for multivariate survival model with time-dependent covariates and

non-normally distributed random effects (Manda, 2011).

The evaluation of the proposed outlier and influence statistics would have been

enriched had this study accessed a variety of multivariate survival datasets, for ex-

ample, recurrent events data from some longitudinal study. The application data

used had 95% censoring rate, which might have affected the regression parameter

estimates obtained from fitting the multivariate survival model to the data. The

high censoring rate in survival data causes biased estimates in Cox survival mod-

els, especially in low sample-sized data (Lin et al., 2013).

The derived outlier and influence statistics are based on the conditional mul-

tivariate survival model, in which estimates of fixed- and random-effects model

parameters are simultaneously solved. The techniques may not apply to marginal

multivariate survival model, in which the estimators for fixed- and random-effects

are solved separately (Liang & Zeger, 1993), although some studies have worked

on diagnostics for marginal models (Russo et al., 2009).

As earlier alluded to, the dependence of observations within clusters for clus-
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tered survival data hampered efforts to think of follow-up outlier and influence

statistics for individual observations within the identified outlying and influential

clusters. The derived methods for cluster level outlier and influence analysis in

this study as well as the existing methods for individual level survival data diag-

nostic analyses (Therneau et al., 1990) are based on assumption of independence

of groups and individual observations, respectively.

6.3 Directions for future research

As highlighted in the previous sections, the model outlier and influence statistics

for clustered survival data are not a widely-studied field. The following areas are

recommended for future work:

• The methods studied in this work are for clustered survival model with time-

constant covariates. However, various formulations of the survival model ex-

ist, for example stratified and time-dependent survival mixed models. Each

choice of the specification has implications on parameter estimation, and

hence on derivations for model diagnostic statistics. Future work could de-

velop outlier and influence statistics for stratified or time-dependent multi-

variate survival model.

• The proposed outlier and influence statistics are post-estimation functions

of model parameter estimators, in which the estimation was done using pe-

nalised joint partial likelihood method (Ripatti & Palmgren, 2000) supported

by the Newton-Raphson maximisation. The model could have been esti-

mated using marginal likelihood construction supported by the EM algorithm

as in Manda (2011), all within a frequentist estimation paradigm. Alterna-

tively, Bayesian estimation could also have been used (Manda & Meyer, 2005;

Cho et al., 2009; Suzuki et al., 2013). In addition, normal random effects

were assumed for the frailty effect in the multivariate survival model. Thus

one could look at either having a marginal or Bayesian construction for the
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model or using a different assumption for random effect distribution. It could

be worthwhile to derive similar group outlier and influence statistics based

on different ways of estimating the multivariate survival model.

• The use of graphical methods to display results of the proposed outlier and

influence statistics could not ascertain the degree of outlying or influence of a

cluster to the multivariate survival model. The formal diagnostic hypothesis

tests about the outlying or influential clusters, using the proposed statistics,

have not been developed. This could be an area for future research.

• The proposed influence statistic has been derived for regression parameters.

However, influence statistics cover assessing impact of a subject on likelihood

estimate, fitted values, and other model inferences. Other than assessing the

impact of clusters on covariates via the regression parameters, one could

assess the impact on quantities such as the likelihood function and fitted

values.

6.4 Contribution of the thesis to statistics field

From the outset, it has been stated that while diagnostic statistics are well known

in linear and linear mixed models, there is a paucity of equivalent statistics for

multivariate survival data models. This study was set out in this context, where

appropriate diagnostic statistics for multivariate survival data models have been

derived. Specifically;

• The study contributes to research on model diagnostic statistics for the clus-

tered survival data, by developing the statistics for assessing outlier and

influential groups of observations in multivariate survival model. The out-

lier statistic derived in this study is capable of showing a cluster that has

measurements that are not consistent with the rest of the data in the other

clusters used in the multivariate survival model. Similarly, the proposed
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influence statistic has the ability of showing impact of a cluster on the esti-

mate of regression coefficient when the concerned cluster is dropped from the

modelling. Both statistics will be applied upon fitting a model to clustered

survival data once, hence they are efficient. This contribution will inform

further critique of the knowledge by future researchers in the area of outlier

and influence statistics for clustered survival model. The proposed statistics

will also enhance the analysis of the clustered survival data by the users of

statistics.

• By adapting some limited theory used in linear, linear mixed-effects, and

univariate survival models, this study has shown that a researcher can inno-

vate some statistics in an area that has less developed statistics. Both the

outlier and influence statistics proposed in this study adapted methods that

are available for linear, linear mixed-effects, and univariate survival models

using appropriate mathematical principles. The extensions add to the efforts

made by previous researchers in diagnostic statistics, which will in turn help

future researchers to develop the knowledge further.

6.5 Concluding remarks

Multivariate survival data are commonly encountered in many disciplines, includ-

ing biomedical studies. Statistical software packages are now available to fit a

survival model to such data. However, due to lack of or limited statistics to use in

assessing outlier and influential data points or groups of data points as it is mostly

done in linear models, such an undertaking is seldom done when the analysis of

multivariate survival data is carried out. It was in this context that this PhD

study was set to fill the gap. The outlier and influence statistics for the analysis of

multivariate survival data have been derived. Both statistics have been developed

from adapting and combining similar statistics for univariate survival data and

those derived in linear mixed-effect models. The derived statistics were able to
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correctly identify outlying and influential clusters based on simulation studies.

It is recommended that when an analysis of multivariate survival data is done,

it should be accompanied by an assessment of unusual clusters to avoid having

biased and spurious findings.
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Appendix A: Map of the 28 districts in Malawi, 2020

Figure A.1: Map of Malawi districts. Source: www.mw.one.un.org
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Appendix B: Child characteristics per sub-district

Table B.1: District-specific child sample, proportion of female children, median
birth order (medBO), and under-five mortality per 1000 live births
sub-District N %Female medBO U-5Mort sub-District N %Female medBO U-5Mort

Chitipa-rural 411 50.4 3 36.5 Ntcheu-rural 597 52.3 3 57.0
Chitipa-urban 75 56.0 2 66.7 Ntcheu-urban 67 38.8 3 74.6
Karonga-rural 426 49.1 3 46.9 Mangochi-rural 709 50.6 3 29.6
Karonga-urban 112 42.9 2 35.7 Mangochi-urban 118 45.8 2 33.9
Nkhatabay-rural 480 51.9 3 35.4 Machinga-rural 695 51.1 3 54.7
Nkhatabay-urban 72 52.8 3 27.8 Machinga-urban 82 39.0 2 0.0
Rumphi-rural 451 51.9 3 46.6 Zomba-rural 535 50.1 3 33.6
Rumphi-urban 99 50.5 2 70.7 Zomba-urban 148 52.7 2 20.3
Mzimba-rural 533 46.9 3 31.9 Chiradzulu-rural 484 49.6 3 47.5
Mzimba-urban 157 50.3 2 31.8 Chiradzulu-urban 21 33.3 2 95.2
Likoma-rural 337 48.1 3 29.7 Blantyre-rural 314 46.2 2 57.3
Likoma-urban 55 45.5 3 54.5 Blantyre-urban 319 47.3 2 53.3
Kasungu-rural 575 48.7 3 33.0 Mwanza-rural 366 56.1 3 43.7
Kasungu-urban 119 51.3 2 67.2 Mwanza-urban 91 57.1 3 22.0
Nkhotakota-rural 529 49.5 3 37.8 Thyolo-rural 476 49.6 3 37.8
Nkhotakota-urban 127 46.5 3 23.6 Thyolo-urban 57 35.1 2 70.2
Ntchisi-rural 531 51.0 3 52.7 Mulanje-rural 534 50.6 3 69.3
Ntchisi-urban 54 55.6 2 55.6 Mulanje-urban 66 57.6 2 75.8
Dowa-rural 540 44.8 3 50.0 Phalombe-rural 636 50.2 3 69.2
Dowa-urban 69 44.9 2 14.5 Phalombe-urban 48 50.0 2 41.7
Salima-rural 587 53.5 3 59.6 Chikwawa-rural 557 51.5 3 46.7
Salima-urban 108 47.2 2 27.8 Chikwawa-urban 37 51.4 3 27.0
Lilongwe-rural 500 52.0 3 56.0 Nsanje-rural 462 48.3 3 41.1
Lilongwe-urban 259 50.2 2 50.2 Nsanje-urban 105 51.4 2 28.6
Mchinji-rural 643 48.7 3 84.0 Balaka-rural 521 47.0 3 46.1
Mchinji-urban 85 47.1 2 11.8 Balaka-urban 99 45.5 2 20.2
Dedza-rural 556 51.1 3 57.6 Neno-rural 535 47.9 3 65.4
Dedza-urban 77 49.4 2 26.0 Neno-urban 40 50.0 2 0.0
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Appendix C: Sample R codes for simulating data with perturbed pa-

rameters

rm(list = ls(all.names = TRUE))

library(survival)

library(simsurv)

library(foreign)

#A1

for (h in 1:1)

{

for (LL in 1:100)

{

set.seed(5557*LL+7552)

n <- 80

j <- 10*h

N <- j*n

covariates1 <- data.frame(id=1:160,cluster=rep(1:2,each=n),x1=

↪→ rbinom(160,1,0.70),x2=rnorm(160,0,1),b=rep(rnorm(2,6.5,1.

↪→ 5),each=n))

covariates2 <- data.frame(id=161:N,cluster=rep(3:j,each=n),x1=

↪→ rbinom(N-160,1,0.70),x2=rnorm(N-160,0,1),b=rep(rnorm(j-2,

↪→ 0,0.4),each=n))

covariates = rbind.data.frame(covariates1,covariates2)

parameter <- data.frame(x1=rep(0.5,each=N),x2=rep(1,each=N))

survtimes <- simsurv(dist=’weibull’,lambdas=0.1,gammas=1,x=

↪→ covariates,betas=parameter)

censoring <-data.frame(id=1:N,censoring=rbinom(N,1,0.4))
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mydata <-merge(survtimes,covariates)

mydata2 <-merge(mydata,censoring)

w=dir.create(file.path(dirname("c:/"), paste0("Scene10b6.5-1.5",

↪→ 100)))

write.dta(mydata2, paste0("c:/","Scene10b6.5-1.5",100,"/Data",LL

↪→ ,".dta"))

}

}

#B3

for (c in 1:1)

{

for (LLLLT in 1:100)

{

set.seed(4188812*LLLL+60000215)

n <- 500

j <- 10*c

N <- j*n

covariates <- data.frame(id=1:N,cluster=rep(1:j,each=n),x1=rbinom

↪→ (N,1,0.70),x2=rnorm(N,0,1),b=rep(rnorm(j,0,0.4),each=n))

parameter1 <- data.frame(x1=rep(2.7,each=1000),x2=rep(1,each=1000

↪→ ))

parameter2 <- data.frame(x1=rep(0.5,each=N-1000),x2=rep(1,each=N-

↪→ 1000))

parameter = rbind.data.frame(parameter1,parameter2)

survtimes <- simsurv(dist=’weibull’,lambdas=0.1,gammas=1,x=

↪→ covariates,betas=parameter)

censoring <-data.frame(id=1:N,censoring=rbinom(N,1,0.4))

mydata <-merge(survtimes,covariates)
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mydata2 <-merge(mydata,censoring)

w=dir.create(file.path(dirname("c:/"), paste0("Case10X1-2.7",100)

↪→ ))

write.dta(mydata2, paste0("c:/","Case10X1-2.7",100,"/Data",LLLLT,

↪→ ".dta"))

}

}

#C3

for (ca in 1:1)

{

for (LLLL in 1:100)

{

set.seed(2715*LLLL+55213)

n <- 80

j <- 10*ca

N <- j*n

covariates <- data.frame(id=1:N,cluster=rep(1:j,each=n),x1=

↪→ rbinom(N,1,0.70),x2=rnorm(N,0,1),b=rep(rnorm(j,0,0.4),

↪→ each=n))

parameter1 <- data.frame(x1=rep(0.5,each=160),x2=rep(2.5,each=16

↪→ 0))

parameter2 <- data.frame(x1=rep(0.5,each=N-160),x2=rep(1,each=N-

↪→ 160))

parameter = rbind.data.frame(parameter1,parameter2)

survtimes <- simsurv(dist=’weibull’,lambdas=0.1,gammas=1,x=

↪→ covariates,betas=parameter)

censoring <-data.frame(id=1:N,censoring=rbinom(N,1,0.4))
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mydata <-merge(survtimes,covariates)

mydata2 <-merge(mydata,censoring)

w=dir.create(file.path(dirname("c:/"), paste0("Scene10X2-2.5",10

↪→ 0)))

write.dta(mydata2, paste0("c:/","Scene10X2-2.5",100,"/Data",LLLL

↪→ ,".dta"))

}

}
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Appendix D: R code for computing group outlier statistic values from

simulated data

#A. Fitting a clustered survival model and computing extended

↪→ martingale, deviance, score residuals

rm(list=ls())

library(survival)

args(coxph)

library(foreign)

library(data.table)

library(dplyr)

library(readstata13)

dir <- setwd("c:/SimulationsII/Case50X1-2.7-X2-2.5-b15-5.51000") #

↪→ data directory

dat <- list.files(dir, full.names = T) #dir should contain all your

↪→ data1 to data1000

listdat <- lapply(dat,read.dta13) #change to read.dta if using

↪→ earlier versions of stata than 13

coefmat <- matrix(NA,nrow =1000,ncol = 50+2) #define matrix that

↪→ will take the 1000 simulations as rows and it will have

↪→ columns taking 50 random effect estimates and 2 covariates

↪→ coef of data

dim(coefmat)
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pb <- txtProgressBar(min=1,max=1000,style = 3)

tmo<- Sys.time()

for(k in 1:1000)

{

ntimes <-data.frame(listdat[[k]] %>%count(listdat[[k]]$cluster))$

↪→ n #for displaying cluster sample sizes

model <- coxph(Surv(as.numeric(eventtime),as.numeric(censoring))~

↪→ x1+x2+frailty(cluster, distribution="gaussian",sparse=F,

↪→ method="reml"),data=listdat[[k]])

for (j in 1:50)

{

dt <- data.frame(cbind(newcluster=1:50,coefx1=rep(coef(model)[1

↪→ ],50),coefx2=rep(coef(model)[2],50),randeffect=coef(model

↪→ )[-2:-1]))

dt2 <- as.data.frame(dt[rep(1:nrow(dt),ntimes),]) #ntimes

↪→ defined above just before the loop

}

dt2$martingale <- listdat[[k]]$censoring - (0.1*listdat[[k]]$

↪→ eventtime*exp(

listdat[[k]]$x1*dt2$coefx1+listdat[[k]]$x2*dt2$coefx2+dt2$

↪→ randeffect))

dt2$sign=ifelse(dt2$martingale>0,1,-1)

dt2$deviance <- dt2$sign*dt2$martingale*sqrt(-2*(dt2$martingale+

↪→ listdat[[k]]$censoring*log(listdat[[k]]$censoring - dt2$
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↪→ martingale)))

dt2$grandmean <- setDT(dt2)[,lapply(.SD,mean,na.rm=TRUE),.SDcols=

↪→ "deviance"]

listdat[[k]]<- data.frame(cbind(listdat[[k]],dt2))

write.dta(listdat[[k]],file = paste0("ddat",k,".dta"))

setTxtProgressBar(pb,k)

}

tm1<- Sys.time()

tm1 - tmo

#B. Computing group outlier statistic

outliermat <- matrix(NA,nrow = 50,ncol =8)

outliermat <- data.frame(outliermat)

colnames(outliermat) <- c("ID","meanclusdev","wtngrpVar","grandavg"

↪→ ,"btwngrpVar","ratiovar","sqrtratio","stdratio")

pb <- txtProgressBar(min=1,max=1000,style = 3)

tmo<- Sys.time()

outliermat_all = matrix(NA,nrow = 50,ncol =8)

colnames(outliermat_all) <- c("ID","meanclusdev","wtngrpVar","

↪→ grandavg","btwngrpVar","ratiovar","sqrtratio","stdratio")

for(k in 1:1000)

{

outliermat[,1]<- 1:50

outliermat[,2] <- setDT(listdat[[k]])[,lapply(.SD,mean,na.rm=TRUE

↪→ ),by=cluster,.SDcols="deviance"][,2]

outliermat[,3]<- setDT(listdat[[k]])[,lapply(.SD,var,na.rm=TRUE),

↪→ by=cluster,.SDcols="deviance"][,2]
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outliermat[,4]<- setDT(listdat[[1]])[,lapply(.SD,mean,na.rm=TRUE)

↪→ ,by=cluster,.SDcols="grandmean"][,2]

outliermat[,5] <- sum(ntimes*(outliermat$meanclusdev - outliermat

↪→ $grandavg))^{2}/(50-1)

outliermat[,6]<- outliermat$wtngrpVar/outliermat$btwngrpVar

outliermat[,7] <- sqrt(outliermat$ratiovar)

outliermat[,8]<- (outliermat$sqrtratio - mean(outliermat$

↪→ sqrtratio))/sqrt(var(outliermat$sqrtratio))

if (k==1) {outliermat_all = outliermat}

else {outliermat_all = rbind.data.frame(outliermat_all,outliermat

↪→ )}

setTxtProgressBar(pb,k)

}

write.dta(outliermat_all,file = paste0("outliermat_all",1000,".dta"

↪→ ))

tm1<- Sys.time()

tm1 - tmo
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Appendix E: R code for computing group influence statistic values

from simulated data

rm(list=ls())

library(survival)

args(coxph)

library(foreign)

library(data.table)

library(dplyr)

library(readstata13)

# A. Fitting clustered survival model and computing extended

↪→ martingale and leverage residuals

dir <- setwd("c:/SimulationsIII/Case10X1-1.8100") #data directory

dat <- list.files(dir, full.names = T) #dir should contain all your

↪→ data1 to data100

listdat <- lapply(dat,read.dta13) #change to read.dta if in stata

↪→ earlier versions than 13

pb <- txtProgressBar(min=1,max=100,style = 3) #set process system

↪→ to go thru 100 data files

tmo<- Sys.time() #set start time

for(k in 1:100)
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{

ntimes <-data.frame(listdat[[k]] %>%count(listdat[[k]]$cluster))$

↪→ n #count sample size in each cluster

model <- coxph(Surv(as.numeric(eventtime),as.numeric(censoring))~

↪→ x1+x2+frailty(cluster, distribution="gaussian",sparse=F,

↪→ method="reml"),data=listdat[[k]])

for (j in 1:10)

{

dt <- data.frame(cbind(newcluster=1:10,coefx1=rep(coef(model)[1

↪→ ],10),coefx2=rep(coef(model)[2],10),randeffect=coef(model

↪→ )[-2:-1]))

dt2 <- as.data.frame(dt[rep(1:nrow(dt),ntimes),]) #ntimes

↪→ defined above just before the loop

}

dt2$martingale <- listdat[[k]]$censoring - (0.1*listdat[[k]]$

↪→ eventtime*exp(

listdat[[k]]$x1*dt2$coefx1+listdat[[k]]$x2*dt2$coefx2+dt2$

↪→ randeffect)) #0.1 is chosen baseline hazard

listdat[[k]]<- data.frame(cbind(listdat[[k]],dt2))

listdat[[k]]$numerator_x1 <- listdat[[k]]$x1 *exp(listdat[[k]]$

↪→ coefx1*listdat[[k]]$x1 +listdat[[k]]$coefx2*listdat[[k]]$x2

↪→ +listdat[[k]]$randeffect)

listdat[[k]]$denominator_x1 <- exp(listdat[[k]]$coefx1*listdat[[k

↪→ ]]$x1 +listdat[[k]]$coefx2*listdat[[k]]$x2 +listdat[[k]]$
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↪→ randeffect)

listdat[[k]]$numerator_x2 <- listdat[[k]]$x2 *exp(listdat[[k]]$

↪→ coefx1*listdat[[k]]$x1 +listdat[[k]]$coefx2*listdat[[k]]$x2

↪→ +listdat[[k]]$randeffect)

listdat[[k]]$sum_numx1 <- setDT(listdat[[k]])[,lapply(.SD,sum,na.

↪→ rm=TRUE),by=cluster,.SDcols="numerator_x1"][,2][rep(1:nrow(

↪→ dt),ntimes),]

listdat[[k]]$sum_denx1 <- setDT(listdat[[k]])[,lapply(.SD,sum,na.

↪→ rm=TRUE),by=cluster,.SDcols="denominator_x1"][,2][rep(1:

↪→ nrow(dt),ntimes),]

listdat[[k]]$sum_numx2 <- setDT(listdat[[k]])[,lapply(.SD,sum,na.

↪→ rm=TRUE),by=cluster,.SDcols="numerator_x2"][,2][rep(1:nrow(

↪→ dt),ntimes),]

listdat[[k]]$leverage_x1 <- listdat[[k]]$x1 - (listdat[[k]]$sum_

↪→ numx1/listdat[[k]]$sum_denx1)

listdat[[k]]$leverage_x2 <- listdat[[k]]$x2 - (listdat[[k]]$sum_

↪→ numx2/listdat[[k]]$sum_denx1)

listdat[[k]]$scoresd_x1 <- listdat[[k]]$martingale * listdat[[k

↪→ ]]$leverage_x1

listdat[[k]]$scoresd_x2 <- listdat[[k]]$martingale * listdat[[k

↪→ ]]$leverage_x2

write.dta(listdat[[k]],file = paste0("ddat",k,".dta"))

setTxtProgressBar(pb,k)

}

tm1<- Sys.time()

tm1 - tmo
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# B. Computing group score residual

influmat <- matrix(NA,nrow =10,ncol =5) #generate matrix where rows

↪→ are 5 clusters and 5 columns for keeping influence values

influmat <- data.frame(influmat)

colnames(influmat) <- c("ID","Influ_x1","Influ_x2","stdInflu_x1","

↪→ stdInflu_x2") #assign names to influence columns for x1 and x

↪→ 2

pb <- txtProgressBar(min=1,max=100,style = 3)

tmo<- Sys.time()

influmat_all = matrix(NA,nrow =10,ncol =5)

colnames(influmat_all) <- c("ID","Influ_x1","Influ_x2","stdInflu_x1

↪→ ","stdInflu_x2")

for(k in 1:100)

{

influmat[,1]<- 1:10

influmat[,2] <- setDT(listdat[[k]])[,lapply(.SD,sum,na.rm=TRUE),

↪→ by=cluster,.SDcols="scoresd_x1"][,2]

influmat[,3] <- setDT(listdat[[k]])[,lapply(.SD,sum,na.rm=TRUE),

↪→ by=cluster,.SDcols="scoresd_x2"][,2]

influmat[,4] <- (influmat$Influ_x1-mean(influmat$Influ_x1))/sd(

↪→ influmat$Influ_x1,na.rm = T)

influmat[,5] <- (influmat$Influ_x2-mean(influmat$Influ_x2))/sd(

↪→ influmat$Influ_x2,na.rm = T)

if (k==1) {influmat_all = influmat}

else {influmat_all = rbind.data.frame(influmat_all,influmat)}
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setTxtProgressBar(pb,k)

}

write.dta(influmat_all,file = paste0("influmat_all",100,".dta")) #

↪→ save matrix of 100 influence values for each of 10 clusters

tm1<- Sys.time()

tm1 - tmo
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Appendix F: R code for applying derived outlier statistic on child sur-

vival data used

rm(list=ls())

library(foreign)

library(survival)

args(coxph)

library(data.table)

library(dplyr)

library(readstata13)

# 1. Read stata data in R, fit model and compute univariate

↪→ outliers

mydata2 = read.dta("c:/Users/User/Desktop/2015␣DHS/cleaned2DHS.dta"

↪→ ,convert.factors=T)

tmo<- Sys.time()

clustersize <-data.frame(mydata2 %>%count(v023))$n #count cluster (

↪→ v023) sizes

clustersize

for(k in 1:1)

{

model <- coxph(Surv(as.numeric(time_death),as.numeric(death_

↪→ status))~as.factor(Female_Child)+birth_order+birth_

↪→ order2+frailty(v023, distribution="gaussian",sparse=F,
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↪→ method="reml"),data=mydata2)

for (j in 1:56)

{

dt <- data.frame(cbind(newCluster=1:56,coefSex=rep(

↪→ coef(model)[1],56),coefbord=rep(coef(model)[2],

↪→ 56),coefbord2=rep(coef(model)[3],56),randeffect

↪→ =coef(model)[-3:-1]))

dt2 <- as.data.frame(dt[rep(1:nrow(dt),clustersize)

↪→ ,])

}

dt2$martingale <- mydata2$death_status - (0.063*mydata2$time

↪→ _death*exp(

mydata2$Female_Child*dt2$coefSex++mydata2$birth_order*dt2$

↪→ coefbord+mydata2$birth_order2*dt2$coefbord2+dt2$

↪→ randeffect))

dt2$sign=ifelse(dt2$martingale>0,1,-1)

dt2$deviance <- dt2$sign*dt2$martingale*sqrt(-2*(dt2$

↪→ martingale+mydata2$death_status*log(mydata2$death_

↪→ status - dt2$martingale)))

dt2$grandmean <- setDT(dt2)[,lapply(.SD,mean,na.rm=TRUE),.

↪→ SDcols="deviance"]

mydata20 <- data.frame(cbind(mydata2,dt2))

write.dta(mydata20, paste0("c:/Users/User/Desktop/mydata20.

↪→ dta"))
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}

tm1<- Sys.time()

tm1 - tmo

#B. Computing cluster outliers

outliermat <- matrix(NA,nrow =56,ncol = 6)

outliermat20 <- data.frame(outliermat)

colnames(outliermat20) <- c("ID","meanclusdev","wtngrpVar","

↪→ grandavg","btwngrpVar","ratiovar")

tmo<- Sys.time()

for(k in 1:1)

{

outliermat20[,1]<- 1:56

outliermat20[,2]<- setDT(mydata20)[,lapply(.SD,mean,na.rm=

↪→ TRUE),by=v023,.SDcols="deviance"][,2]

outliermat20[,3]<- setDT(mydata20)[,lapply(.SD,var,na.rm=

↪→ TRUE),by=v023,.SDcols="deviance"][,2]

outliermat20[,4]<- setDT(mydata20)[,lapply(.SD,mean,na.rm=

↪→ TRUE),by=v023,.SDcols="grandmean"][,2]

outliermat20[,5]<- sum(clustersize*(outliermat20$meanclusdev

↪→ - outliermat20$grandavg))^{2}/(56-1)

outliermat20[,6]<- outliermat20$wtngrpVar/outliermat20$

↪→ btwngrpVar

outliermat20 = cbind.data.frame(outliermat20)

}
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write.dta(outliermat20, paste0("c:/Users/User/Desktop/outlierd20.

↪→ dta"))

tm1<- Sys.time()

tm1 - tmo
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Appendix G: R code for applying derived influence statistic on child

survival data used

rm(list=ls())

library(survival)

args(coxph)

library(foreign)

library(ggplot2)

library(ggrepel)

library(dplyr)

library(data.table)

library(readstata13)

#A. Fitting clustered survival model and computing extended

↪→ martingale and leverage residuals

ourdata = read.dta("C:/Users/User/Desktop/r␣codes␣compiled/

↪→ influence3.dta",convert.factors=F)

tmo<- Sys.time()

ntimes <-data.frame(ourdata %>%count(v023))$n #picks sample size in

↪→ each cluster v023

ntimes

for(k in 1:1)

{

model <- coxph(Surv(as.numeric(time_death),as.numeric(death_

↪→ status))~as.factor(Female_Child)+birth_order+birth_

↪→ order2+frailty(v023, distribution="gaussian",sparse=F,
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↪→ method="reml"),data=ourdata)

for (j in 1:56)

{

dt <- data.frame(cbind(newDist=1:56,coefSex=rep(coef(

↪→ model)[1],56),coefbord=rep(coef(model)[2],56),

↪→ coefbord2=rep(coef(model)[3],56),randeffect=

↪→ coef(model)[-3:-1]))

dt2 <- as.data.frame(dt[rep(1:nrow(dt),ntimes),])

}

dt2$martingale <- ourdata$death_status - (0.063*ourdata$time

↪→ _death*exp(ourdata$Female_Child*dt2$coefSex+ourdata$

↪→ birth_order*dt2$coefbord+ourdata$birth_order2*dt2$

↪→ coefbord2+dt2$randeffect))

ourdata <- data.frame(cbind(ourdata,dt2))

ourdata$numerator_Sex <- ourdata$Female_Child *exp(ourdata$

↪→ Female_Child*ourdata$coefSex+ourdata$birth_order*

↪→ ourdata$coefbord+ourdata$birth_order2*ourdata$coefbord

↪→ 2+ourdata$randeffect)

ourdata$numerator_bord <- ourdata$birth_order *exp(ourdata$

↪→ Female_Child*ourdata$coefSex+ourdata$birth_order*

↪→ ourdata$coefbord+ourdata$birth_order2*ourdata$coefbord

↪→ 2+ourdata$randeffect)

ourdata$numerator_bord2 <- ourdata$birth_order2 *exp(ourdata
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↪→ $Female_Child*ourdata$coefSex+ourdata$birth_order*

↪→ ourdata$coefbord+ourdata$birth_order2*ourdata$coefbord

↪→ 2+ourdata$randeffect)

ourdata$denominator_Sex <- exp(ourdata$Female_Child*ourdata$

↪→ coefSex+ourdata$birth_order*ourdata$coefbord+ourdata$

↪→ birth_order2*ourdata$coefbord2+ourdata$randeffect)

ourdata$sum_numSex <- setDT(ourdata)[,lapply(.SD,sum,na.rm=

↪→ TRUE),by=v023,.SDcols="numerator_Sex"][,2][rep(1:nrow(

↪→ dt),ntimes),]

ourdata$sum_numbord <- setDT(ourdata)[,lapply(.SD,sum,na.rm=

↪→ TRUE),by=v023,.SDcols="numerator_bord"][,2][rep(1:nrow

↪→ (dt),ntimes),]

ourdata$sum_numbord2 <- setDT(ourdata)[,lapply(.SD,sum,na.rm

↪→ =TRUE),by=v023,.SDcols="numerator_bord2"][,2][rep(1:

↪→ nrow(dt),ntimes),]

ourdata$sum_denSex <- setDT(ourdata)[,lapply(.SD,sum,na.rm=

↪→ TRUE),by=v023,.SDcols="denominator_Sex"][,2][rep(1:

↪→ nrow(dt),ntimes),]

ourdata$leverage_Sex <- ourdata$Female_Child - (ourdata$sum_

↪→ numSex/ourdata$sum_denSex)

ourdata$leverage_bord <- ourdata$birth_order - (ourdata$sum_

↪→ numbord/ourdata$sum_denSex)

ourdata$leverage_bord2 <- ourdata$birth_order2 - (ourdata$

↪→ sum_numbord2/ourdata$sum_denSex)
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ourdata$scoresdSex <- ourdata$martingale * ourdata$leverage_

↪→ Sex

ourdata$scoresdbord <- ourdata$martingale * ourdata$leverage

↪→ _bord

ourdata$scoresdbord2 <- ourdata$martingale * ourdata$

↪→ leverage_bord2

write.dta(ourdata,file = "data44.dta")

}

tm1<- Sys.time()

tm1 - tmo

# B. Computing group score residual

influmat <- matrix(NA,nrow =56,ncol =4)

influmat <- data.frame(influmat)

colnames(influmat) <- c("ID","Influ_Sex","Influ_bord","Influ_bord2"

↪→ )

tmo<- Sys.time()

influmat_all = matrix(NA,nrow =56,ncol =4)

colnames(influmat_all) <- c("ID","Influ_Sex","Influ_bord","Influ_

↪→ bord2")

for(k in 1:1)

{

influmat[,1]<- 1:56

influmat[,2] <- setDT(ourdata)[,lapply(.SD,sum,na.rm=TRUE),

↪→ by=v023,.SDcols="scoresdSex"][,2]
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influmat[,3] <- setDT(ourdata)[,lapply(.SD,sum,na.rm=TRUE),

↪→ by=v023,.SDcols="scoresdbord"][,2]

influmat[,4] <- setDT(ourdata)[,lapply(.SD,sum,na.rm=TRUE),

↪→ by=v023,.SDcols="scoresdbord2"][,2]

}

write.dta(influmat,file = "influence3.dta")

tm1<- Sys.time()

tm1 - tmo
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